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Regardless of the problem on which an analytical chemist is working, its solution requires 
a knowledge of chemistry and the ability to use that knowledge. For example, an analytical 
chemist who is studying the effect of pollution on spruce trees needs to know, or know where 
to find, the chemical differences between p-hydroxybenzoic acid and p-hydroxyacetophenone, 
two common phenols found in the needles of spruce trees. 

The ability to “think as a chemist” is a product of your experience in the classroom and in 
the laboratory. For the most part, the material in this text assumes you are familiar with topics 
covered in earlier courses; however, because of its importance to analytical chemistry, this 
chapter provides a review of equilibrium chemistry. Much of the material in this chapter should 
be familiar to you, although some topics—ladder diagrams and activity, for example—likely 
afford you with new ways to look at equilibrium chemistry.
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6A Reversible Reactions and Chemical Equilibria
In 1798, the chemist Claude Berthollet accompanied Napoleon’s military 
expedition to Egypt. While visiting the Natron Lakes, a series of salt wa-
ter lakes carved from limestone, Berthollet made an observation that led 
him to an important discovery. When exploring the lake’s shore, Berthollet 
found deposits of Na2CO3, a result he found surprising. Why did Berthol-
let find this result surprising and how did it contribute to an important dis-
covery? Answering these questions provides us with an example of chemical 
reasoning and introduces us to the topic of this chapter.

At the end of the 18th century, chemical reactivity was explained in 
terms of elective affinities.1 If, for example, substance A reacts with sub-
stance BC to form AB

A BC AB C$+ +

then A and B were said to have an elective affinity for each other. With elec-
tive affinity as the driving force for chemical reactivity, reactions were un-
derstood to proceed to completion and to proceed in one direction. Once 
formed, the compound AB could not revert to A and BC.

AB C A BC$+ +\

From his experience in the laboratory, Berthollet knew that adding 
solid Na2CO3 to a solution of CaCl2 produces a precipitate of CaCO3.

( ) ( ) ( ) ( )s aq aq sNa CO CaCl 2NaCl CaCO2 3 2 3$+ +

Understanding this, Berthollet was surprised to find solid Na2CO3 form-
ing on the edges of the lake, particularly since the deposits formed only 
when the lake’s salt water, NaCl(aq), was in contact with limestone, CaCO3. 
Where the lake was in contact with clay soils, there was little or no Na2CO3.  

Berthollet’s important insight was recognizing that the chemistry leading 
to the formation of Na2CO3 is the reverse of that seen in the laboratory.

( ) ( ) ( ) ( )aq s s aq2NaCl CaCO Na CO CaCl3 2 3 2$+ +

Using this insight Berthollet reasoned that the reaction is reversible, and 
that the relative amounts of NaCl, CaCO3, Na2CO3, and CaCl2 determine 
the direction in which the reaction occurs and the final composition of the 
reaction mixture. We recognize a reaction’s ability to move in both direc-
tions by using a double arrow when we write the reaction.

( ) ( ) ( ) ( )s aq aq sNa CO CaCl 2NaCl CaCO2 3 2 3?+ +

Berthollet’s reasoning that reactions are reversible was an important 
step in understanding chemical reactivity. When we mix together solutions 
of Na2CO3 and CaCl2 they react to produce NaCl and CaCO3. As the 
reaction takes place, if we monitor the mass of Ca2+ that remains in solu-
tion and the mass of CaCO3 that precipitates, the result looks something 

1 Quilez, J. Chem. Educ. Res. Pract. 2004, 5, 69–87.

Napoleon’s expedition to Egypt was the 
first to include a significant scientific pres-
ence. The Commission of Sciences and 
Arts, which included Claude Berthollet, 
began with 151 members, and operated 
in Egypt for three years. In addition to 
Berthollet’s work, other results included 
a publication on mirages and a detailed 
catalogs of plant and animal life, mineral-
ogy, and archeology. For a review of the 
Commission’s contributions, see Gillispie, 
C. G. “Scientific Aspects of the French 
Egyptian Expedition, 1798-1801,” Proc. 
Am. Phil. Soc. 1989, 133, 447–474.

Natron is another name for the mineral 
sodium carbonate, Na2CO3•10H2O. In 
nature, it usually contains impurities of 
NaHCO3 and NaCl. In ancient Egypt, 
natron was mined and used for a variety 
of purposes, including as a cleaning agent 
and in mummification.

For obvious reasons, we call the double ar-
row, ? , an equilibrium arrow.
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like Figure 6.1. At the start of the reaction the mass of Ca2+ decreases and 
the mass of CaCO3 increases. Eventually the reaction reaches a point after 
which there is no further change in the amounts of these species. Such a 
condition is called a state of equilibrium. 

Although a system at equilibrium appears static on a macroscopic level, 
it is important to remember that the forward and the reverse reactions con-
tinue to occur. A reaction at equilibrium exists in a steady-state, in which 
the rate at which a species forms equals the rate at which it is consumed.

6B Thermodynamics and Equilibrium Chemistry
Thermodynamics is the study of thermal, electrical, chemical, and mechani-
cal forms of energy. The study of thermodynamics crosses many disciplines, 
including physics, engineering, and chemistry. Of the various branches 
of thermodynamics, the most important to chemistry is the study of how 
energy changes during a chemical reaction.

Consider, for example, the general equilibrium reaction shown in equa-
tion 6.1, which involves the species A, B, C, and D, with stoichiometric 
coefficients of a, b, c, and d.

a b c dA B C D?+ + 6.1
By convention, we identify the species on the left side of the equilibrium 
arrow as reactants and those on the right side of the equilibrium arrow as 
products. As Berthollet discovered, writing a reaction in this fashion does 
not guarantee that the reaction of A and B to produce C and D is favorable. 
Depending on initial conditions the reaction may move to the left, it may 
move to the right, or it may exist in a state of equilibrium. Understanding 
the factors that determine the reaction’s final equilibrium position is one of 
the goals of chemical thermodynamics.

The direction of a reaction is that which lowers the overall free energy. 
At a constant temperature and pressure, which is typical of many bench-
top chemical reactions, a reaction’s free energy is given by the Gibb’s free 
energy function  

G H T S3 3 3= - 6.2

where T is the temperature in kelvin, and DG, DH, and DS are the differ-
ences in the Gibb's free energy, the enthalpy, and the entropy between the 
products and the reactants. 

Enthalpy is a measure of the flow of energy, as heat, during a chemi-
cal reaction. A reaction that releases heat has a negative ∆H and is called 
exothermic. An endothermic reaction absorbs heat from its surroundings 
and has a positive ∆H. Entropy is a measure of energy that is unavailable 
for useful, chemical work. The entropy of an individual species is always 
positive and generally is larger for gases than for solids, and for more com-
plex molecules than for simpler molecules. Reactions that produce a large 
number of simple, gaseous products usually have a positive ∆S.

Figure 6.1 Graph showing how 
the masses of Ca2+ and CaCO3 
change as a function of time dur-
ing the precipitation of CaCO3. 
The dashed line indicates when 
the reaction reaches equilibrium. 
Prior to equilibrium the masses of 
Ca2+ and CaCO3 are changing; 
after equilibrium is reached, their 
masses remain constant.

For many students, entropy is the most 
difficult topic in thermodynamics to un-
derstand. For a rich resource on entropy, 
visit the following web site: http://www.
entropysite.oxy.edu.

Mass

Time

Ca2+

CaCO3

equilibrium reached
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The sign of ∆G indicates the direction in which a reaction moves to 
reach its equilibrium position. A reaction is thermodynamically favorable 
when its enthalpy, ∆H, decreases and its entropy, ∆S, increases. Substitut-
ing the inequalities ∆H < 0 and ∆S > 0 into equation 6.2 shows that a 
reaction is thermodynamically favorable when ∆G is negative. When ∆G is 
positive the reaction is unfavorable as written (although the reverse reaction 
is favorable). A reaction at equilibrium has a ∆G of zero.

As a reaction moves from its initial, non-equilibrium condition to its 
equilibrium position, its value of ∆G approaches zero. At the same time, the 
chemical species in the reaction experience a change in their concentrations. 
The Gibb's free energy, therefore, must be a function of the concentrations 
of reactants and products. 

As shown in equation 6.3, we can divide the Gibb’s free energy, ∆G, 
into two terms.

lnG G RT Qo3 3= + 6.3

The first term, ∆G o, is the change in the Gibb’s free energy when each spe-
cies in the reaction is in its standard state, which we define as follows: 
gases with unit partial pressures, solutes with unit concentrations, and pure 
solids and pure liquids. The second term includes the reaction quotient, Q, 
which accounts for non-standard state pressures and concentrations. For 
reaction 6.1 the reaction quotient is

Q [A] [B]
[C] [D]

a b

c d

= 6.4

where the terms in brackets are the concentrations of the reactants and 
products. Note that we define the reaction quotient with the products in 
the numerator and the reactants in the denominator. In addition, we raise 
the concentration of each species to a power equivalent to its stoichiometry 
in the balanced chemical reaction. For a gas, we use partial pressure in place 
of concentration. Pure solids and pure liquids do not appear in the reaction 
quotient.

At equilibrium the Gibb’s free energy is zero, and equation 6.3 simpli-
fies to

° lnG RT K3 =-

where K is an equilibrium constant that defines the reaction’s equilibrium 
position. The equilibrium constant is just the reaction quotient’s numerical 
value when we substitute equilibrium concentrations into equation 6.4.

K [A] [B]
[C] [D]

a b

c d

eq eq

eq eq
= 6.5

Here we include the subscript “eq” to indicate a concentration at equilibri-
um. Although we will omit the “eq” when we write an equilibrium constant 

Although not shown here, each concen-
tration term in equation 6.4 is divided by 
the corresponding standard state concen-
tration; thus, the term [C]c really means

[C]
[C] c

o& 0
where [C]o is the standard state concen-
tration for C. There are two important 
consequences of this: (1) the value of Q is 
unitless; and (2) the ratio has a value of 1 
for a pure solid or a pure liquid. This is the 
reason that pure solids and pure liquids do 
not appear in the reaction quotient.

Equation 6.2 shows that the sign of DG 
depends on the signs of DH and of DS, 
and the temperature, T. The following 
table summarizes the possibilities.

DH DS DG 
– + DG < 0 at all temperatures
– – DG < 0 at low temperatures
– + DG < 0 at high temperatures

+ – DG > 0 at all temperatures

As written, equation 6.5 is a limiting law 
that applies only to infinitely dilute solu-
tions where the chemical behavior of one 
species is unaffected by the presence of 
other species. Strictly speaking, equation 
6.5 is written in terms of activities instead 
of concentrations. We will return to this 
point in Section 6I. For now, we will stick 
with concentrations as this convention al-
ready is familiar to you.
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expressions, it is important to remember that the value of K is determined 
by equilibrium concentrations.

6C Manipulating Equilibrium Constants
We will take advantage of two useful relationships when we work with equi-
librium constants. First, if we reverse a reaction’s direction, the equilibrium 
constant for the new reaction is the inverse of that for the original reaction. 
For example, the equilibrium constant for the reaction

KA 2B AB [A][B]
[AB ]

12 2
2?+ =

is the inverse of that for the reaction

( )K KAB A 2B [AB ]
[A][B]

2 1
1

2
2

2

? + = =-

Second, if we add together two reactions to form a new reaction, the equi-
librium constant for the new reaction is the product of the equilibrium 
constants for the original reactions.

KA C AC [A][C]
[AC]

3?+ =

KAC C AC [AC][C]
[AC ]

42
2?+ =

K K KA 2C AC [A][C]
[AC]

[AC] [C]
[AC ]

[A][C]
[AC ]

5 3 42
2

2
2? # #+ = = =

Example 6.1
Calculate the equilibrium constant for the reaction

2A B C 3D?+ +

given the following information
: .
: .
: .
: .

Rxn K
Rxn K
Rxn K
Rxn K

1 0 40
2 0 10
3 2 0
4 5 0

A B D
A E C D F
C E B
F C D B

1

2

3

4

?

?

?

?

+ =

+ + + =

+ =

+ + =

SOLUTION
The overall reaction is equivalent to 

Rxn Rxn Rxn Rxn1 2 3 4+ - +

Subtracting a reaction is equivalent to adding the reverse reaction; thus, 
the overall equilibrium constant is 

.
. . . .K K

K K K
2 0

0 40 0 10 5 0 0 10
3

1 2 4# # # #= = =
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Another common name for an oxidation–
reduction reaction is a redox reaction, 
where “red” is short for reduction and “ox” 
is short for oxidation.

Practice Exercise 6.1
Calculate the equilibrium constant for the reaction

C D F 2A 3B?+ + +

using the equilibrium constants from Example 6.1.
Click here to review your answer to this exercise.

6D Equilibrium Constants for Chemical Reactions
Several types of chemical reactions are important in analytical chemistry, 
either in preparing a sample for analysis or during the analysis. The most 
significant of these are precipitation reactions, acid–base reactions, com-
plexation reactions, and oxidation–reduction reactions. In this section we 
review these reactions and their equilibrium constant expressions.

6D.1 Precipitation Reactions

In a precipitation reaction, two or more soluble species combine to form 
an insoluble precipitate. The most common precipitation reaction is a 
metathesis reaction in which two soluble ionic compounds exchange parts. 
For example, if we add a solution of lead nitrate, Pb(NO3)2, to a solution 
of potassium chloride, KCl, a precipitate of lead chloride, PbCl2, forms. 
We usually write a precipitation reaction as a net ionic equation, which 
shows only the precipitate and those ions that form the precipitate; thus, 
the precipitation reaction for PbCl2 is 

( ) ( ) ( )aq aq sPb 2Cl PbCl2
2?++ -

When we write the equilibrium constant for a precipitation reaction, we fo-
cus on the precipitate’s solubility; thus, for PbCl2, the solubility reaction is

( ) ( ) ( )s aq aqPbCl Pb 2Cl2
2? ++ -

and its equilibrium constant, or solubility product, Ksp, is
K [Pb ][Cl ]sp

2 2= + - 6.6
Even though it does not appear in the Ksp expression, it is important to 
remember that equation 6.6 is valid only if PbCl2(s) is present and in equi-
librium with Pb2+ and Cl–. You will find values for selected solubility prod-
ucts in Appendix 10.

6D.2 Acid–Base Reactions

A useful definition of acids and bases is that independently introduced in 
1923 by Johannes Brønsted and Thomas Lowry. In the Brønsted-Lowry 
definition, an acid is a proton donor and a base is a proton acceptor. Note 
the connection between these definitions—defining a base as a proton ac-
ceptor implies there is an acid available to donate the proton. For example, 
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in reaction 6.7 acetic acid, CH3COOH, donates a proton to ammonia, 
NH3, which serves as the base.

( ) ( ) ( ) ( )aq aq aq aqCH COOH NH NH CH COO3 3 4 3?+ ++ - 6.7

When an acid and a base react, the products are a new acid and a new 
base. For example, the acetate ion, CH3COO–, in reaction 6.7 is a base that 
can accept a proton from the acidic ammonium ion, NH4

+ , forming acetic 
acid and ammonia. We call the acetate ion the conjugate base of acetic acid, 
and we call the ammonium ion the conjugate acid of ammonia.

STRONG AND WEAK ACIDS

The reaction of an acid with its solvent (typically water) is an acid disso-
ciation reaction. We divide acids into two categories—strong and weak—
based on their ability to donate a proton to the solvent. A strong acid, such 
as HCl, almost completely transfers its proton to the solvent, which acts 
as the base.

( ) ( ) ( ) ( )aq l aq aqHCl H O H O Cl2 3$+ ++ -

We use a single arrow ($ ) in place of the equilibrium arrow (? ) be-
cause we treat HCl as if it dissociates completely in an aqueous solution. In 
water, the common strong acids are hydrochloric acid (HCl), hydroiodic 
acid (HI), hydrobromic acid (HBr), nitric acid (HNO3), perchloric acid 
(HClO4), and the first proton of sulfuric acid (H2SO4).

A weak acid, of which aqueous acetic acid is one example, does not 
completely donate its acidic proton to the solvent. Instead, most of the acid 
remains undissociated with only a small fraction present as the conjugate 
base.

( ) ( ) ( ) ( )aq l aq aqCH COOH H O H O CH COO3 2 3 3?+ ++ -

The equilibrium constant for this reaction is an acid dissociation con-
stant, Ka, which we write as  

.K 1 75 10[CH COOH]
[CH COO ][H O ] 5

a
3

3 3 #= =
- +

-

The magnitude of Ka provides information about a weak acid’s relative 
strength, with a smaller Ka corresponding to a weaker acid. The ammo-
nium ion, NH4

+ , for example, has a Ka of 5.702 × 10–10 and is a weaker 
acid than acetic acid.

A monoprotic weak acid, such as acetic acid, has only a single acidic 
proton and a single acid dissociation constant. Other acids, such as phos-
phoric acid, have multiple acidic protons, each characterized by an acid 
dissociation constant. We call such acids polyprotic. Phosphoric acid, for 
example, has three acid dissociation reactions and three acid dissociation 
constants.

In a different solvent, HCl may not be a 
strong acid. For example, HCl does not 
act as a strong acid in methanol. In this 
case we use the equilibrium arrow when 
writing the acid–base reaction.

HCl CH OH CH OH Cl3 3 2?+ +
+ -

Earlier we noted that we omit pure sol-
ids and pure liquids from equilibrium 
constant expressions. Because the solvent, 
H2O, is not pure, you might wonder why 
we have not included it in acetic acid’s 
Ka expression. Recall that we divide each 
term in an equilibrium constant expres-
sion by its standard state value. Because 
the concentration of H2O is so large—it 
is approximately 55.5 mol/L—its concen-
tration as a pure liquid and as a solvent are 
virtually identical. The ratio

[H O]
[H O]

2
o

2

is essentially 1.00.
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( ) ( ) ( ) ( )aq l aq aqH PO H O H O H PO3 4 2 3 2 4?+ ++ -  

.K 7 11 10[H PO ]
[H PO ][H O ] 3

a1
3 4

2 4 3 #= =
- +

-

( ) ( ) ( ) ( )aq l aq aqH PO H O H O HPO2
2 4 2 3 4?+ +- + -

.K 6 32 10[H PO ]
[HPO ][H O ]

2

2
8

a
2 4

4 3 #= =-

- +
-

( ) ( ) ( ) ( )aq l aq aqHPO H O H O PO2 3
4 2 3 4?+ +- + -

.K 4 5 10[HPO ]
[PO ][H O ]

3 2

3
13

a
4

4 3 #= =-

- +
-

The decrease in the acid dissociation constants from Ka1 to Ka3 tells us 
that each successive proton is harder to remove. Consequently, H3PO4 is 
a stronger acid than H PO42

- , and H PO42
-  is a stronger acid than HPO4

2- .

STRONG AND WEAK BASES

The most common example of a strong base is an alkali metal hydroxide, 
such as sodium hydroxide, NaOH, which completely dissociates to pro-
duce hydroxide ion.

( ) ( ) ( )s aq aqNaOH Na OH$ ++ -

A weak base, such as the acetate ion, CH3COO–, only partially accepts 
a proton from the solvent, and is characterized by a base dissociation 
constant, Kb. For example, the base dissociation reaction and the base 
dissociation constant for the acetate ion are 

( ) ( ) ( ) ( )aq l aq aqCH COO H O OH CH COOH3 2 3?+ +- -

.K 5 71 10[CH COO ]
[CH COOH][OH ] 10

b
3

3 #= =-

-
-

A polyprotic weak base, like a polyprotic acid, has more than one base dis-
sociation reaction and more than one base dissociation constant.

AMPHIPROTIC SPECIES

Some species can behave as either a weak acid or as a weak base. For ex-
ample, the following two reactions show the chemical reactivity of the bi-
carbonate ion, HCO3

- , in water. 
( ) ( ) ( ) ( )aq l aq aqHCO H O H O CO3 2 3 3

2?+ +- + - 6.8

( ) ( ) ( ) ( )aq l aq aqHCO H O OH H CO3 2 2 3?+ +- - 6.9

A species that is both a proton donor and a proton acceptor is called am-
phiprotic. Whether an amphiprotic species behaves as an acid or as a base 
depends on the equilibrium constants for the competing reactions. For 
bicarbonate, the acid dissociation constant for reaction 6.8
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.K 4 69 10[HCO ]
[CO ][H O ] 11

a2
3

3
2

3 #= =-

- +
-

is smaller than the base dissociation constant for reaction 6.9.

.K 2 25 10[HCO ]
[H CO ][OH ] 8

b2
3

2 3 #= =-

-
-

Because bicarbonate is a stronger base than it is an acid, we expect that an 
aqueous solution of HCO3

-  is basic.

DISSOCIATION OF WATER

Water is an amphiprotic solvent because it can serve as an acid or as a base. 
An interesting feature of an amphiprotic solvent is that it is capable of react-
ing with itself in an acid–base reaction.

( ) ( ) ( )l aq aq2H O H O OH2 3? ++ - 6.10
We identify the equilibrium constant for this reaction as water’s dissociation 
constant, Kw,

.K 1 00 10[H O ][OH ] 14
w 3 #= =+ - - 6.11

at a temperature of 24 oC. The value of Kw varies substantially with tem-
perature. For example, at 20 oC Kw is 6.809 × 10–15, while at 30 oC Kw is 
1.469 × 10–14. At 25 oC, Kw is 1.008 × 10–14, which is sufficiently close to 
1.00 × 10–14 that we can use the latter value with negligible error.

An important consequence of equation 6.11 is that the concentration 
of H3O+ and the concentration of OH– are related. If we know [H3O+] 
for a solution, then we can calculate [OH–] using equation 6.11.

Example 6.2
What is the [OH–] if the [H3O+] is 6.12 × 10-5 M?

SOLUTION

.
. .K

6 12 10
1 00 10 1 63 10[OH ] [H O ] 5

14
10

3

w

#
# #= = =-

+ -

-
-

THE PH SCALE

Equation 6.11 allows us to develop a pH scale that indicates a solution’s 
acidity. When the concentrations of H3O+ and OH– are equal a solution 
is neither acidic nor basic; that is, the solution is neutral. Letting

[H O ] [OH ]3 =+ -

substituting into equation 6.11

.K 1 00 10[H O ] 14
w 3

2 #= =+ -

and solving for [H3O+] gives

pH = –log[H3O+]
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[ ] . .1 00 10 1 00 10H O 14 7
3 # #= =+ - -

A neutral solution has a hydronium ion concentration of 1.00 × 10-7 M 
and a pH of 7.00. In an acidic solution the concentration of H3O+ is 
greater than that for OH–, which means that

.1 00 10[H O ] M> 7
3 #+ -

The pH of an acidic solution, therefore, is less than 7.00. A basic solution, 
on the other hand, has a pH greater than 7.00. Figure 6.2 shows the pH 
scale and pH values for some representative solutions.

TABULATING VALUES FOR Ka AND Kb

A useful observation about weak acids and weak bases is that the strength 
of a weak base is inversely proportional to the strength of its conjugate 
weak acid. Consider, for example, the dissociation reactions of acetic acid 
and acetate.

( ) ( ) ( ) ( )aq l aq aqCH COOH H O H O CH COO3 2 3 3?+ ++ - 6.12

( ) ( ) ( ) ( )aq l aq aqCH COO H O OH CH COOH3 2 3?+ +- - 6.13
Adding together these two reactions gives the reaction

( ) ( ) ( )l aq aq2H O H O OH2 3? ++ -

for which the equilibrium constant is Kw. Because adding together two 
reactions is equivalent to multiplying their respective equilibrium con-
stants, we may express Kw as the product of Ka for CH3COOH and Kb for 
CH3COO–. 

K K Kw a,CH COOH b,CH COO3 3#= -

For any weak acid, HA, and its conjugate weak base, A–, we can generalize 
this to the following equation

K K Kw a,HA b,A#= - 6.14

where HA and A- are a conjugate acid–base pair. The relationship between 
Ka and Kb for a conjugate acid–base pair simplifies our tabulation of acid 
and base dissociation constants. Appendix 11 includes acid dissociation 
constants for a variety of weak acids. To find the value of Kb for a weak base, 
use equation 6.14 and the Ka value for its corresponding weak acid.

Example 6.3
Using Appendix 11, calculate values for the following equilibrium con-
stants.
(a) Kb for pyridine, C5H5N
(b) Kb for dihydrogen phosphate, H PO42

-

Figure 6.2 Scale showing the pH 
value for representative solutions. 
Milk of Magnesia is a saturated 
solution of Mg(OH)2.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Gastric Juice

Vinegar

“Pure” Rain
Milk

Neutral
Blood

Seawater

Milk of Magnesia

Household Bleach

pH

A common mistake when using equation 
6.14 is to forget that it applies to a conju-
gate acid–base pair only.
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SOLUTION

(a) .
. .K K

K
5 90 10
1 00 10 1 69 106

14
9

b,C H N
a,C H NH

w
5 5

5 5 #
# #= = =-

-
-

+

(b) .
. .K K

K
7 11 10
1 00 10 1 41 103

14
12

b,H PO
a,H PO

w
2 4

3 4 #
# #= = =-

-
-

-

Practice Exercise 6.2
Using Appendix 11, calculate Kb values for hydrogen oxalate, HC O42

- , 
and oxalate, C O2 4

2- .
Click here to review your answer to this exercise.

6D.3 Complexation Reactions

A more general definition of acids and bases was proposed in 1923 by G. 
N. Lewis. The Brønsted-Lowry definition of acids and bases focuses on an 
acid’s proton-donating ability and a base’s proton-accepting ability.  Lewis 
theory, on the other hand, uses the breaking and the forming of covalent 
bonds to describe acids  and bases. In this treatment, an acid is an electron 
pair acceptor and a base in an electron pair donor. Although we can apply 
Lewis theory to the treatment of acid–base reactions, it is more useful for 
treating complexation reactions between metal ions and ligands.

The following reaction between the metal ion Cd2+ and the ligand 
NH3 is typical of a complexation reaction.

( ) ( ) ( )aq aq aqCd 4:NH Cd(:NH )2
3 3 4

2?++ + 6.15
The product of this reaction is a metal–ligand complex. In writing this 
reaction we show ammonia as :NH3, using a pair of dots to emphasize the 
pair of electrons that it donates to Cd2+. In subsequent reactions we will 
omit this notation.

METAL-LIGAND FORMATION CONSTANTS

We characterize the formation of a metal–ligand complex by a formation 
constant, Kf. The complexation reaction between Cd2+ and NH3, for 
example, has the following equilibrium constant.

.K 5 5 10[Cd ][NH ]
[Cd(NH ) ]

f
7

2
3

4
3 4

2

#= =+

+

6.16

The reverse of reaction 6.15 is a dissociation reaction, which we characterize 
by a dissociation constant, Kd, that is the reciprocal of Kf.

Many complexation reactions occur in a stepwise fashion. For example, 
the reaction between Cd2+ and NH3 involves four successive reactions. 

( ) ( ) ( )aq aq aqCd NH Cd(NH )2
3 3

2?++ + 6.17

When finding the Kb value for a poly-
protic weak base, be careful to choose the 
correct Ka value. Remember that equation 
6.14 applies to a conjugate acid–base pair 
only. The conjugate acid of H PO2 4

-  is 
H3PO4, not HPO2

4
- .
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( ) ( ) ( )aq aq aqCd(NH ) NH Cd(NH ) 2
2

3
2

3 3?++ + 6.18

( ) ( ) ( )aq aq aqCd(NH ) NH Cd(NH )2
2

3
2

3 3 3?++ + 6.19

( ) ( ) ( )aq aq aqCd(NH ) NH Cd(NH )3
2

4
2

3 3 3?++ + 6.20
To avoid ambiguity, we divide formation constants into two categories. A 
stepwise formation constant, which we designate as Ki for the ith step, 
describes the successive addition of one ligand to the metal–ligand com-
plex from the previous step. Thus, the equilibrium constants for reactions 
6.17–6.20 are, respectively, K1, K2, K3, and K4. An overall, or cumulative 
formation constant, which we designate as bi, describes the addition of 
i ligands to the free metal ion. The equilibrium constant in equation 6.16 
is correctly identified as b4, where

K K K K4 1 2 3 4# # #b =

In general

K K K Ki i i
i

n

1 2
1

# # #gb = =
=

%
Stepwise and overall formation constants for selected metal–ligand com-
plexes are in Appendix 12.

METAL-LIGAND COMPLEXATION AND SOLUBILITY

A formation constant describes the addition of one or more ligands to a 
free metal ion. To find the equilibrium constant for a complexation reaction 
that includes a solid, we combine appropriate Ksp and Kf expressions. For 
example, the solubility of AgCl increases in the presence of excess chloride  
ions as the result of the following complexation reaction.

( ) ( ) ( )s aq aqAgCl Cl Ag(Cl) 2?+ - - 6.21
We can write this reaction as the sum of three other equilibrium reactions 
with known equilibrium constants—the solubility of AgCl, which is de-
scribed by its Ksp reaction

( ) ( ) ( )s aq aqAgCl Ag Cl? ++ -

and the stepwise formation of AgCl2
- , which is described by K1 and K2 

reactions.

( ) ( ) ( )aq aq aqAg Cl AgCl?++ -

( ) ( ) ( )aq aq aqAgCl Cl AgCl2?+ - -

The equilibrium constant for reaction 6.21, therefore, is Ksp × K1 × K2.

Example 6.4
Determine the value of the equilibrium constant for the reaction

( ) ( )s aqPbCl PbCl2 2?
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SOLUTION

We can write this reaction as the sum of three other reactions. The first of 
these reactions is the solubility of PbCl2(s), which is described by its Ksp 
reaction.

( ) ( ) ( )s aq aqPbCl Pb 2Cl2
2? ++ -

The remaining two reactions are the stepwise formation of PbCl2(aq), 
which are described by K1 and K2.

( ) ( ) ( )aq aq aqPb Cl PbCl2 ?++ - +

( ) ( ) ( )aq aq aqPbCl Cl PbCl2?++ -

Using values for Ksp, K1, and K2 from Appendix 10 and Appendix 12, we 
find that the equilibrium constant is

( . ) . . .K K K K 1 7 10 38 9 1 62 1 1 101 2
5 3

sp # # # # # #= = =- -

Practice Exercise 6.3
What is the equilibrium constant for the following reaction? You will 
find appropriate equilibrium constants in Appendix 10 and Appendix 11. 

( ) ( ) ( ) ( )s aq aq aqAgBr 2S O Ag(S O ) Br2 3
2

2 3
3?+ +- - -

Click here to review your answer to this exercise.

6D.4 Oxidation–Reduction (Redox) Reactions

An oxidation–reduction reaction occurs when electrons move from one 
reactant to another reactant. As a result of this transfer of electrons, the 
reactants undergo a change in oxidation state. Those reactant that increases 
its oxidation state undergoes oxidation, and the reactant that decreases its 
oxidation state undergoes reduction. For example, in the following redox 
reaction between Fe3+ and oxalic acid, H2C2O4, iron is reduced because 
its oxidation state changes from +3 to +2.

( ) ( ) ( )

( ) ( ) ( )

aq aq l

aq g aq

2Fe H C O 2H O
2Fe 2CO 2H O

3
2 2 4 2

2
2 3

?+ +

+ +

+

+ + 6.22

Oxalic acid, on the other hand, is oxidized because the oxidation state for 
carbon increases from +3 in H2C2O4 to +4 in CO2.

We can divide a redox reaction, such as reaction 6.22, into separate 
half-reactions that show the oxidation and the reduction processes.

( ) ( ) ( ) ( ) eaq l g aq 2H C O 2H O 2CO 2H O2 2 4 2 2 3?+ + ++ -

( ) ( )eaq aqFe Fe3 2?++ - +

It is important to remember, however, that an oxidation reaction and a 
reduction reaction always occur as a pair. We formalize this relationship 
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by identifying as a reducing agent the reactant that is oxidized, because 
it provides the electrons for the reduction half-reaction. Conversely, the 
reactant that is reduced is an oxidizing agent. In reaction 6.22, Fe3+ is 
the oxidizing agent and H2C2O4 is the reducing agent.

The products of a redox reaction also have redox properties. For ex-
ample, the Fe2+ in reaction 6.22 is oxidized to Fe3+ when CO2 is reduced 
to H2C2O4. Borrowing some terminology from acid–base chemistry, Fe2+ 
is the conjugate reducing agent of the oxidizing agent Fe3+, and CO2 is the 
conjugate oxidizing agent of the reducing agent H2C2O4.

THERMODYNAMICS OF REDOX REACTIONS

Unlike precipitation reactions, acid–base reactions, and complexation reac-
tions, we rarely express the equilibrium position of a redox reaction with 
an equilibrium constant. Because a redox reaction involves a transfer of 
electrons from a reducing agent to an oxidizing agent, it is convenient to 
consider the reaction’s thermodynamics in terms of the electron. 

For a reaction in which one mole of a reactant undergoes oxidation or 
reduction, the net transfer of charge, Q, in coulombs is

Q nF=

where n is the moles of electrons per mole of reactant, and F is Faraday’s 
constant (96 485 C/mol). The free energy, ∆G, to move this charge, Q, over 
a change in potential, E, is

G EQ3 =

The change in free energy (in kJ/mole) for a redox reaction, therefore, is
G nFE3 =- 6.23

where ∆G has units of kJ/mol. The minus sign in equation 6.23 is the 
result of a different convention for assigning a reaction’s favorable direc-
tion. In thermodynamics, a reaction is favored when ∆G is negative, but 
an oxidation-reduction reaction is favored when E is positive. Substituting 
equation 6.23 into equation 6.3

lnnFE nFE RT Qo- =- +

and dividing by –nF, leads to the well-known Nernst equation

lnE E nF
RT Qo= -

where Eo is the potential under standard-state conditions. Substituting ap-
propriate values for R and F, assuming a temperature of 25 oC (298 K), and 
switching from ln to log gives the potential in volts as

. logE E n Q0 05916o= - 6.24

ln(x) = 2.303log(x)
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STANDARD POTENTIALS

A redox reaction’s standard potential, E o, provides an alternative way of 
expressing its equilibrium constant and, therefore, its equilibrium position. 
Because a reaction at equilibrium has a ∆G of zero, the potential, E, also is 
zero at equilibrium. Substituting these values into equation 6.24 and rear-
ranging provides a relationship between E o and K.

. logE n K0 05916o= 6.25

We generally do not tabulate standard potentials for redox reactions. 
Instead, we calculate E o using the standard potentials for the correspond-
ing oxidation half-reaction and reduction half-reaction. By convention, 
standard potentials are provided for reduction half-reactions. The standard 
potential for a redox reaction, E o, is

E E Ered ox
o o o= -

where Ered
o  and Eox

o  are the standard reduction potentials for the reduction 
half-reaction and the oxidation half-reaction. 

Because we cannot measure the potential for a single half-reaction, 
we arbitrarily assign a standard reduction potential of zero to a reference 
half-reaction

( ) ( ) ( )eaq l g2 2 2H O H O H3 2 2?+ ++ -

and report all other reduction potentials relative to this reference. Appen-
dix 13 contains a list of selected standard reduction potentials. The more 
positive the standard reduction potential, the more favorable the reduction 
reaction is under standard state conditions. For example, under standard 
state conditions the reduction of Cu2+ to Cu (E o = +0.3419 V) is more 
favorable than the reduction of Zn2+ to Zn (E o = –0.7618 V).

Example 6.5
Calculate (a) the standard potential, (b) the equilibrium constant, and (c) 
the potential when [Ag+] = 0.020 M and [Cd2+] = 0.050 M, for the fol-
lowing reaction at 25oC.

( ) ( ) ( ) ( )s aq s aqCd 2Ag 2Ag Cd2?+ ++ +

SOLUTION 
(a)  In this reaction Cd is oxidized and Ag+ is reduced. The standard cell 

potential, therefore, is

. ( . ) .E E E 0 7996 0 4030 1 2026 Vo
Ag /Ag
o

Cd /Cd
o

2= - = - - =+ +

(b)  To calculate the equilibrium constant we substitute appropriate val-
ues into equation 6.25.

. . logE K1 2026 2
0 05916V Vo= =

A standard potential is the potential when 
all species are in their standard states. You 
may recall that we define standard state 
conditions as follows: all gases have unit 
partial pressures, all solutes have unit con-
centrations, and all solids and  liquids are 
pure. 
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 Solving for K gives the equilibrium constant as

.log K 40 6558=

.K 4 527 1040#=

(c)  To calculate the potential when [Ag+] is 0.020 M and [Cd2+] is 
0.050 M, we use the appropriate relationship for the reaction quo-
tient, Q, in equation 6.24.

. logE E n
0 05916 V

[Ag ]
[Cd ]o

2

2

= - +

+

. .
( . )

. .logE 1 2026 2
0 05916

0 020
0 050 1 14V V V2= - =

Practice Exercise 6.4
For the following reaction at 25 oC

( ) ( ) ( )

( ) ( ) ( )

aq aq aq

aq aq l

5Fe MnO 8H
5Fe Mn 4H O

2
4

3 2
2

?+ +

+ +

+ - +

+ +

calculate (a) the standard potential, (b) the equilibrium constant, and (c) 
the potential under these conditions: [Fe2+] = 0.50 M, [Fe3+] = 0.10 M, 
[ MnO4

- ] = 0.025 M, [Mn2+] = 0.015 M, and a pH of 7.00. See Appen-
dix 13 for standard state reduction potentials.
Click here to review your answer to this exercise.

When writing precipitation, acid–base, 
and metal–ligand complexation reactions, 
we represent acidity as H3O+. Redox re-
actions more commonly are written using 
H+ instead of H3O+. For the reaction 
in Practice Exercise 6.4, we could replace 
H+ with H3O+ and increase the stoi-
chiometric coefficient for H2O from 4 
to 12.

6E Le Châtelier’s Principle
At a temperature of 25 oC, acetic acid’s dissociation reaction

( ) ( ) ( ) ( )aq l aq aqCH COOH H O H O CH COO3 2 3 3?+ ++ -

has an equilibrium constant of 

.K 1 75 10[CH COOH]
[CH COO ][H O ] 5

a
3

3 3 #= =
- +

- 6.26

Because equation 6.26 has three variables—[CH3COOH], [CH3COO–], 
and [H3O+]—it does not have a unique mathematical solution. Neverthe-
less, although two solutions of acetic acid may have different values for 
[CH3COOH], [CH3COO–], and [H3O+], each solution has the same 
value of Ka.

If we add sodium acetate to a solution of acetic acid, the concentration 
of CH3COO– increases, which suggests there is an increase in the value 
of Ka; however, because Ka must remain constant, the concentration of all 
three species in equation 6.26 must change to restore Ka to its original value. 
In this case, a partial reaction of CH3COO– and H3O+ decreases their con-
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centrations, increases the concentration of CH3COOH, and reestablishes 
the equilibrium.

The observation that a system at equilibrium responds to an external 
action by reequilibrating itself in a manner that diminishes that action, is 
formalized as Le Châtelier’s principle. One common action is to change 
the concentration of a reactant or product for a system at equilibrium. As 
noted above for a solution of acetic acid, if we add a product to a reaction 
at equilibrium the system responds by converting some of the products 
into reactants. Adding a reactant has the opposite effect, resulting in the 
conversion of reactants to products.

When we add sodium acetate to a solution of acetic acid, we directly 
apply the action to the system. It is also possible to apply a change concen-
tration indirectly. Consider, for example, the solubility of AgCl.

( ) ( ) ( )s aq aqAgCl Ag Cl? ++ - 6.27
The effect on the solubility of AgCl of adding AgNO3 is obvious, but what 
is the effect of if we add a ligand that forms a stable, soluble complex with 
Ag+?  Ammonia, for example, reacts with Ag+ as shown here

( ) ( ) ( )aq aq aqAg 2NH Ag(NH )3 3 2?++ + 6.28
Adding ammonia decreases the concentration of Ag+ as the Ag(NH )3 2

+  
complex forms. In turn, a decrease in the concentration of Ag+ increases 
the solubility of AgCl as reaction 6.27 reestablishes its equilibrium posi-
tion. Adding together reaction 6.27 and reaction 6.28 clarifies the effect 
of ammonia on the solubility of AgCl, by showing ammonia as a reactant.

( ) ( ) ( ) ( )s aq aq aqAgCl 2NH Ag(NH ) Cl3 3 2?+ ++ - 6.29

Example 6.6
What happens to the solubility of AgCl if we add HNO3 to the equilib-
rium solution defined by reaction 6.29?

SOLUTION

Nitric acid is a strong acid, which reacts with ammonia as shown here

( ) ( ) ( ) ( )aq aq aq aqHNO NH NH NO3 3 4 3?+ ++ -

Adding nitric acid lowers the concentration of ammonia. Decreasing am-
monia’s concentration causes reaction 6.29 to move from products to re-
actants, decreasing the solubility of AgCl.

Increasing or decreasing the partial pressure of a gas is the same as in-
creasing or decreasing its concentration. Because the concentration of a gas 
depends on its partial pressure, and not on the total pressure of the system, 
adding or removing an inert gas has no effect on a reaction’s equilibrium 
position. 

Most reactions involve reactants and products dispersed in a solvent. If 
we change the amount of solvent by diluting the solution, then the concen-

So what is the effect on the solubility of 
AgCl of adding AgNO3? Adding AgNO3 
increases the concentration of Ag+ in solu-
tion. To reestablish equilibrium, some of 
the Ag+ and Cl– react to form additional 
AgCl; thus, the solubility of AgCl decreas-
es. The solubility product, Ksp, of course, 
remains unchanged.

We can use the ideal gas law to deduce the 
relationship between pressure and con-
centration. Starting with PV = nRT, we 
solve for the molar concentration

V
n

RT
PM = =

Of course, this assumes that the gas is be-
having ideally, which usually is a reason-
able assumption under normal laboratory 
conditions.
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trations of all reactants and products must increase ; conversely, if we allow 
the solvent to evaporate partially, then the concentration of the solutes must 
increase. The effect of simultaneously changing the concentrations of all 
reactants and products is not intuitively as obvious as when we change the 
concentration of a single reactant or product. As an example, let’s consider 
how diluting a solution affects the equilibrium position for the formation 
of the aqueous silver-amine complex (reaction 6.28). The equilibrium con-
stant for this reaction is

[Ag ] [NH ]
[Ag(NH ) ]

2
eq 3 eq

2
3 2 eq

b = +

+

6.30

where we include the subscript “eq” for clarification. If we dilute a portion 
of this solution with an equal volume of water, each of the concentration 
terms in equation 6.30 is cut in half. The reaction quotient, Q, becomes

. ( . )
.

( . )
.Q 0 5 0 5

0 5
0 5
0 5 4[Ag ] [NH ]

[Ag(NH ) ]
[Ag ] [NH ]
[Ag(NH ) ]

2 3 2
eq 3 eq

2
3 2 eq

eq 3 eq
2

3 2 eq
# b= = =+

+

+

+

Because Q is greater than b2, equilibrium is reestablished by shifting the 
reaction to the left, decreasing the concentration of Ag(NH )3 2

+ . Note that 
the new equilibrium position lies toward the side of the equilibrium reac-
tion that has the greatest number of solute particles (one Ag+ ion and two 
molecules of NH3 versus a single metal-ligand complex). If we concentrate 
the solution of Ag(NH )3 2

+  by evaporating some of the solvent, equilibrium 
is reestablished in the opposite direction. This is a general conclusion that 
we can apply to any reaction. Increasing volume always favors the direc-
tion that produces the greatest number of particles, and decreasing volume 
always favors the direction that produces the fewest particles. If the number 
of particles is the same on both sides of the reaction, then the equilibrium 
position is unaffected by a change in volume.

6F Ladder Diagrams
When we develop or evaluate an analytical method, we often need to un-
derstand how the chemistry that takes place affects our results. Suppose we 
wish to isolate Ag+ by precipitating it as AgCl.  If we also need to control 
pH, then we must use a reagent that does not adversely affect the solubility 
of AgCl. It is a mistake to use NH3 to adjust the pH, for example, because 
it increases the solubility of AgCl (reaction 6.29). 

In this section we introduce the ladder diagram as a simple graphical 
tool for visualizing equilibrium chemistry.2 We will use ladder diagrams to 
determine what reactions occur when we combine several reagents, to esti-

2 Although not specifically on the topic of ladder diagrams as developed in this section, the follow-
ing papers provide appropriate background information: (a) Runo, J. R.; Peters, D. G. J. Chem. 
Educ. 1993, 70, 708–713; (b) Vale, J.; Fernández-Pereira, C.; Alcalde, M. J. Chem. Educ. 1993, 
70, 790–795; (c) Fernández-Pereira, C.; Vale, J. Chem. Educator 1996, 6, 1–18; (d) Fernández-
Pereira, C.; Vale, J.; Alcalde, M. Chem. Educator 2003, 8, 15–21; (e) Fernández-Pereira, C.; 
Alcalde, M.; Villegas, R.; Vale, J. J. Chem. Educ. 2007, 84, 520–525.

One of the primary sources of determi-
nate errors in many analytical methods is 
failing to account for potential chemical 
interferences. 

Ladder diagrams are a great tool for help-
ing you to think intuitively about analyti-
cal chemistry. We will make frequent use 
of them in the chapters to follow.
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mate the approximate composition of a system at equilibrium, and to evalu-
ate how a change to solution conditions might affect an analytical method.

6F.1 Ladder Diagrams for Acid–Base Equilibria

Let’s use acetic acid, CH3COOH, to illustrate the process we will use to 
draw and to interpret an acid–base ladder diagram. Before we draw the 
diagram, however, let’s consider the equilibrium reaction in more detail. 
The equilibrium constant expression for acetic acid’s dissociation reaction

( ) ( ) ( ) ( )aq l aq aqCH COOH H O H O CH COO3 2 3 3?+ ++ -

 is

.K 1 75 10[CH COOH]
[CH COO ][H O ] 5

a
3

3 3 #= =
- +

-

First, let’s take the logarithm of each term in this equation and multiply 
through by –1

.log log logK 4 76 [H O ] [CH COOH]
[CH COO ]

a 3
3

3- = =- -+
-

Now, let’s replace log[H O ]3- +  with pH and rearrange the equation to 
obtain the result shown here.

. log4 76pH [CH COOH]
[CH COO ]

3

3= +
-

6.31

Equation 6.31 tells us a great deal about the relationship between pH 
and the relative amounts of acetic acid and acetate at equilibrium. If the 
concentrations of CH3COOH and CH3COO– are equal, then equation 
6.31 reduces to

. ( ) . .log4 76 1 4 76 0 4 76pH= + = + =

If the concentration of CH3COO– is greater than that of CH3COOH, 
then the log term in equation 6.31 is positive and the pH is greater than 
4.76. This is a reasonable result because we expect the concentration of the 
conjugate base, CH3COO–, to increase as the pH increases. Similar reason-
ing will convince you that the pH is less than 4.76 when the concentration 
of CH3COOH exceeds that of CH3COO– .

Now we are ready to construct acetic acid’s ladder diagram (Figure 
6.3). First, we draw a vertical arrow that represents the solution’s pH, with 
smaller (more acidic) pH levels at the bottom and larger (more basic) pH 
levels at the top. Second, we draw a horizontal line at a pH equal to acetic 
acid’s pKa value. This line, or step on the ladder, divides the pH axis into 
regions where either CH3COOH or CH3COO– is the predominate spe-
cies. This completes the ladder diagram.

Using the ladder diagram, it is easy to identify the predominate form 
of acetic acid at any pH. At a pH of 3.5, for example, acetic acid exists pri-
marily as CH3COOH. If we add sufficient base to the solution such that 
the pH increases to 6.5, the predominate form of acetic acid is CH3COO–.
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Example 6.7
Draw a ladder diagram for the weak base p-nitrophenolate and identify its 
predominate form at a pH of 6.00.

SOLUTION

To draw a ladder diagram for a weak base, we simply draw the ladder 
diagram for its conjugate weak acid. From Appendix 12, the pKa for p-
nitrophenol is 7.15. The resulting ladder diagram is shown in Figure 6.4. 
At a pH of 6.00, p-nitrophenolate is present primarily in its weak acid form.

Figure 6.3 Acid–base ladder diagram for acetic acid showing the relative concen-
trations of CH3COOH and CH3COO–. A simpler version of this ladder diagram 
dispenses with the equalities and shows only the predominate species in each 
region.

more acidic

more basic

pH pH = pKa = 4.76

[CH3COO–] > [CH3COOH]

[CH3COOH] > [CH3COO–]

[CH3COO–] = [CH3COOH]

Figure 6.4 Acid–base ladder dia-
gram for p-nitrophenolate.

more acidic

more basic

pH pKa = 7.15

O2N OH

O–O2N

Practice Exercise 6.5
Draw a ladder diagram for carbonic acid, H2CO3. Because H2CO3 is 
a diprotic weak acid, your ladder diagram will have two steps. What is 
the predominate form of carbonic acid when the pH is 7.00? Relevant 
equilibrium constants are in Appendix 11.
Click here to review your answer to this exercise.

A ladder diagram is particularly useful for evaluating the reactivity be-
tween a weak acid and a weak base. Figure 6.5, for example, shows a single 
ladder diagram for acetic acid/acetate and for p-nitrophenol/p-nitrophe-
nolate. An acid and a base can not co-exist if their respective areas of pre-
dominance do not overlap. If we mix together solutions of acetic acid and 
sodium p-nitrophenolate, the reaction

( ) ( )

( ) ( )

aq aq

aq aq

C H NO CH COOH
CH COO C H NO H

6 4 2 3

3 6 4 2

?+

+

-

- 6.32

occurs because the areas of predominance for acetic acid and p-nitropheno-
late do not overlap. The solution’s final composition depends on which spe-
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cies is the limiting reagent. The following example shows how we can use 
the ladder diagram in Figure 6.5 to evaluate the result of mixing together 
solutions of acetic acid and p-nitrophenolate.

Example 6.8
Predict the approximate pH and the final composition after mixing to-
gether 0.090 moles of acetic acid and 0.040 moles of p-nitrophenolate.

SOLUTION

The ladder diagram in Figure 6.5 indicates that the reaction between ace-
tic acid and p-nitrophenolate is favorable. Because acetic acid is in excess, 
we assume the reaction of p-nitrophenolate to p-nitrophenol is complete. 
At equilibrium essentially no p-nitrophenolate remains and there are 
0.040 mol of p-nitrophenol. Converting p-nitrophenolate to p-nitrophe-
nol consumes 0.040 moles of acetic acid; thus

moles CH3COOH = 0.090 – 0.040 = 0.050 mol

moles CH3COO– = 0.040 mol

According to the ladder diagram, the pH is 4.76 when there are equal 
amounts of CH3COOH and CH3COO–. Because we have slightly more 
CH3COOH than CH3COO–, the pH is slightly less than 4.76.

Figure 6.5 Acid–base ladder diagram showing the areas of predominance for acetic acid/acetate and for p-nitrophenol/p-
nitrophenolate. The areas shaded in blue shows the pH range where the weak bases are the predominate species; the 
weak acid forms are the predominate species in the areas shaded in pink.

pKa = 4.74

CH3COO


CH3COOH 

pKa = 7.15

O2N OH

O–O2N
pH

Practice Exercise 6.6
Using Figure 6.5, predict the approximate pH and the composition of 
the solution formed by mixing together 0.090 moles of p-nitrophenolate 
and 0.040 moles of acetic acid. 
Click here to review your answer to this exercise.
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If the areas of predominance for an acid and a base overlap, then we 
do not expect that much of a reaction will occur. For example, if we mix 
together solutions of CH3COO– and p-nitrophenol, we do not expect a 
significant change in the moles of either reagent. Furthermore, the pH of 
the mixture must be between 4.76 and 7.15, with the exact pH depending 
upon the relative amounts of CH3COO– and p-nitrophenol.

We also can use an acid–base ladder diagram to evaluate the effect of 
pH on other equilibria. For example, the solubility of CaF2

( ) ( ) ( )s aq aqCaF Ca 2F2
2? ++ -

is affected by pH because F– is a weak base. From Le Châtelier’s principle, 
we know that converting F– to HF will increase the solubility of CaF2. To 
minimize the solubility of CaF2 we need to maintain the solution’s pH so 
that F– is the predominate species. The ladder diagram for HF (Figure 6.6) 
shows us that maintaining a pH of more than 3.17 will minimize solubil-
ity losses.

6F.2 Ladder Diagrams for Complexation Equilibria

We can apply the same principles for constructing and interpreting an acid–
base ladder diagram to equilibria that involve metal–ligand complexes. For 
a complexation reaction we define the ladder diagram’s scale using the 
concentration of uncomplexed, or free ligand, pL. Using the formation of 
Cd(NH3)2+ as an example

( ) ( ) ( )aq aq aqCd NH Cd(NH )2
3 3

2?++ +

we can show that log K1 is the dividing line between the areas of predomi-
nance for Cd2+ and for Cd(NH3)2+.

.K 3 55 10 [Cd ][NH ]
[Cd(NH ) ]

1
2

2
3

3
2

#= = +

+

( . )log log log logK 3 55 10 [Cd ]
[Cd(NH ) ] [NH ]1

2
2

3
2

3#= = -+

+

.log logK 2 55 [Cd ]
[Cd(NH ) ] pNH1 2

3
2

3= = ++

+

.log log logK 2 55pNH [Cd(NH ) ]
[Cd ]

[Cd(NH ) ]
[Cd ]

13
3

2

2

3
2

2

= + = ++

+

+

+

Thus, Cd2+ is the predominate species when pNH3 is greater than 2.55 (a 
concentration of NH3 smaller than 2.82 × 10–3 M) and for a pNH3 value 
less than 2.55, Cd(NH3)2+ is the predominate species. Figure 6.7 shows 
a complete metal–ligand ladder diagram for Cd2+ and NH3 that includes  
additional Cd–NH3 complexes.

Figure 6.6 Acid–base ladder dia-
gram for HF. To minimize the sol-
ubility of CaF2, we need to keep 
the pH above 3.17, with more 
basic pH levels leading to smaller 
solubility losses. See Chapter 8 for 
a more detailed discussion. 

more acidic

more basic

pH pKa = 3.17

HF

F–

more ligand

less ligand

pNH3

logK1 = 2.55

logK2 = 2.01

logK3 = 1.34

logK4 = 0.84

Cd2+

Cd(NH3)2+

Cd(NH3)2
2+

Cd(NH3)3
2+

Cd(NH3)4
2+

Figure 6.7 Metal–ligand ladder 
diagram for Cd2+–NH3 com-
plexation reactions. Note that 
higher-order complexes form 
when pNH3 is smaller (which cor-
responds to larger concentrations 
of NH3).
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Example 6.9
Draw a single ladder diagram for the Ca(EDTA)2– and the Mg(EDTA)2–  
metal–ligand complexes. Use your ladder diagram to predict the result of 
adding 0.080 moles of Ca2+ to 0.060 moles of Mg(EDTA)2–. EDTA is an 
abbreviation for the ligand ethylenediaminetetraacetic acid.

SOLUTION

Figure 6.8 shows the ladder diagram for this system of metal–ligand com-
plexes. Because the predominance regions for Ca2+ and Mg(EDTA)2- do 
not overlap, the reaction

( ) ( ) ( ) ( )aq aq aq aqCa Mg(EDTA) Ca(EDTA) Mg2 2 2 2?+ ++ +- -

proceeds essentially to completion. Because Ca2+ is the excess reagent, the 
composition of the final solution is approximately

moles Ca2+ = 0.080 – 0.060 = 0.020 mol

moles Ca(EDTA)2– = 0.060 mol

moles Mg2+ = 0.060 mol

moles Mg(EDTA)2– = 0 mol

Figure 6.8 Metal–ligand ladder diagram for Ca(EDTA)2– and for Mg(EDTA)2–. 
The areas shaded in blue show the pEDTA range where the free metal ions are the 
predominate species; the metal–ligand complexes are the predominate species in 
the areas shaded in pink.

pEDTA

logKMg(EDTA)2- = 8.79

logKCa(EDTA)2- = 10.69

Ca2+

Ca(EDTA)2–

Mg2+

Mg(EDTA)2–
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The metal–ligand ladder diagram in Figure 6.7 uses stepwise formation 
constants. We also can construct a ladder diagram using cumulative forma-
tion constants. For example, the first three stepwise formation constants for 
the reaction of Zn2+ with NH3

.( ) ( ) ( ) Kaq aq aq 1 6 10Zn NH Zn(NH ) 1
22

3 3
2? #+ =+ +

.( ) ( ) ( ) Kaq aq aq 1 95 10Zn(NH ) NH Zn(NH ) 2
2

2
2

3
2

3 3? #+ =+ +

.( ) ( ) ( ) Kaq aq aq 2 3 10Zn(NH ) NH Zn(NH )2
2

3
2

3
2

3 3 3? #+ =+ +

suggests that the formation of Zn(NH ) 3
2

3
+  is more favorable than the for-

mation of Zn(NH ) 2
3
+  or Zn(NH ) 2

2
3
+ . For this reason, the equilibrium  is 

best represented by the cumulative formation reaction shown here.

.( ) ( ) ( )aq aq aq3 7 2 10Zn NH Zn(NH )2
3
2

3
6

3 3? #b+ =+ +

To see how we incorporate this cumulative formation constant into a lad-
der diagram, we begin with the reaction’s equilibrium constant expression.

[Zn ][NH ]
[Zn(NH ) ]

3 32
3

3 3
2

b = +

+

Taking the log of each side

log log log3[Zn ]
[Zn(NH ) ] [NH ]3 2

3 3
2

3b = -+

+

and rearranging gives

log log3
1

3
1pNH [Zn(NH ) ]

[Zn ]
33

3 3
2

2

b= + +

+

When the concentrations of Zn2+ and Zn(NH ) 3
2

3
+  are equal, then

.log3
1 2 29pNH 33 b= =

In general, for the metal–ligand complex MLn, the step for a cumulative 
formation constant is 

logn
1pL nb=

Figure 6.9 shows the complete ladder diagram for the Zn2+–NH3 system.

6F.3 Ladder Diagram for Oxidation/Reduction Equilibria

We also can construct ladder diagrams to help us evaluate redox equilibria. 
Figure 6.10 shows a typical ladder diagram for two half-reactions in which 
the scale is the potential, E. The Nernst equation defines the areas of pre-
dominance. Using the Fe3+/Fe2+ half-reaction as an example, we write

. .ln logE E nF
RT 0 771 0 05916[Fe ]

[Fe ]
[Fe ]
[Fe ]o

3

2

3

2

= - = -+

+

+

+

At a potential more positive than the standard state potential, the predomi-
nate species is Fe3+, whereas Fe2+ predominates at potentials more negative 

Because K3 is greater than K2, which is 
greater than K1, the formation of the 
metal-ligand complex Zn (NH )3 3

2+  is 
more favorable than the formation of the 
other metal ligand complexes. For this 
reason, at lower values of pNH3 the con-
centration of Zn (NH )3 3

2+  is larger than 
that for Zn (NH )3 2

2+  and Zn(NH3)2+. 
The value of b3 is

b3 = K1 × K2 × K3 

Figure 6.9 Ladder diagram for 
Zn2+–NH3 metal–ligand com-
plexation reactions showing both 
a step based on a cumulative for-
mation constant and a step based 
on a stepwise formation constant.

more ligand

less ligand

pNH3

logK4 = 2.03

Zn2+

logb3 = 2.291
3

Zn(NH3)3
2+

Zn(NH3)4
2+
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than E o. When coupled with the step for the Sn4+/Sn2+ half-reaction we 
see that Sn2+ is a useful reducing agent for Fe3+. If Sn2+ is in excess, the 
potential of the resulting solution is near +0.154 V.

Because the steps on a redox ladder diagram are standard state poten-
tials, a complication arises if solutes other than the oxidizing agent and re-
ducing agent are present at non-standard state concentrations. For example, 
the potential for the half-reaction

( ) ( ) ( ) ( )eaq aq aq l2UO 4H O U 6H O2
2

3
4

2?+ + ++ + - +

depends on the solution’s pH. To define areas of predominance in this case 
we begin with the Nernst equation

. . logE 0 327 2
0 05916

[UO ][H O ]
[U ]

2
2

3
4

4

=+ - + +

+

and factor out the concentration of H3O+.

. . .log logE 0 327 2
0 05916

2
0 05916[H O ] [UO ]

[U ]
3

4

2
2

4

=+ + -+
+

+

From this equation we see that the area of predominance for UO2
2+  and 

U4+ is defined by a step at a potential where [U ] [UO ]4
2
2=+ + .

. . logE 0 327 2
0 05916 [H O ] 0.327 0.1183pH3

4=+ + =+ -+

Figure 6.11 shows how pH affects the step for the UO2
2+ /U4+ half-reaction.

6G Solving Equilibrium Problems
Ladder diagrams are a useful tool for evaluating chemical reactivity and 
for providing a reasonable estimate of a chemical system’s composition at 
equilibrium. If we need a more exact quantitative description of the equi-
librium condition, then a ladder diagram is insufficient; instead, we need 
to find an algebraic solution. In this section we will learn how to set-up and 

Figure 6.10 Redox ladder diagram for Fe3+/Fe2+ and for 
Sn4+/Sn2+. The areas shaded in blue show the potential range 
where the oxidized forms are the predominate species; the reduced 
forms are the predominate species in the areas shaded in pink. 
Note that a more positive potential favors the oxidized form.

E

Eo
Sn4+/Sn2+ = +0.154 V

Eo
Fe3+/Fe2+ = +0.771V

Fe3+

Fe2+

Sn4+

Sn2+

more negative

more positive

Figure 6.11 Redox ladder diagram 
for the UO2

2+ /U4+ half-reaction 
showing the effect of pH on the 
step defined by the standard state’s 
potential.

more negative

more positive

E

Eo = +0.327 V (pH = 0)

U4+

Eo = +0.209 V (pH = 1)

Eo = +0.090 V (pH = 2)

UO2
2+
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solve equilibrium problems. We will start with a simple problem and work 
toward more complex problems. 

6G.1 A Simple Problem—Solubility of Pb(IO3)2

If we place an insoluble compound such as Pb(IO3)2 in deionized water, 
the solid dissolves until the concentrations of Pb2+ and IO3

-  satisfy the 
solubility product for Pb(IO3)2. At equilibrium the solution is saturated 
with Pb(IO3)2, which means simply that no more solid can dissolve. How 
do we determine the equilibrium concentrations of Pb2+ and IO3

- , and 
what is the molar solubility of Pb(IO3)2 in this saturated solution?

We begin by writing the equilibrium reaction and the solubility product 
expression for Pb(IO3)2.

( ) ( ) ( )s aq aqPb(IO ) Pb 2IO3 2
2

3? ++ -

.K 2 5 10[Pb ][IO ] 13
sp

2
3

2 #= =+ - - 6.33
As Pb(IO3)2 dissolves, two IO3

-  ions form for each ion of Pb2+. If we as-
sume that the change in the molar concentration of Pb2+ at equilibrium is 
x, then the change in the molar concentration of IO3

-  is 2x. The following 
table helps us keep track of the initial concentrations, the change in con-
centrations, and the equilibrium concentrations of Pb2+ and IO3

- .
Concentrations Pb(IO3)2 (s) ? Pb2+ (aq) + 2I IO3

-  (aq)
Initial solid 0 0

Change solid +x +2x
Equilibrium solid x 2x

Substituting the equilibrium concentrations into equation 6.33 and solv-
ing gives

( ) ( ) .x x x2 4 2 5 102 3 13#= = -

.x 3 97 10 5#= -

Substituting this value of x back into the equilibrium concentration expres-
sions for Pb2+ and IO3

-  gives their concentrations as

[ ] . .x x4 0 10 2 7 9 10Pb M and [IO ]5 52
3# #= = = =+ - - -

Because one mole of Pb(IO3)2 contains one mole of Pb2+, the molar solu-
bility of Pb(IO3)2 is equal to the concentration of Pb2+, or 4.0 × 10–5 M.

When we first add solid Pb(IO3)2 to wa-
ter, the concentrations of Pb2+ and IO3

-

are zero and the reaction quotient, Q, is
Q = [Pb2+][ IO3

- ]2 = 0
As the solid dissolves, the concentrations 
of these ions increase, but Q remains 
smaller than Ksp. We reach equilibrium 
and “satisfy the solubility product” when

Q = Ksp

Practice Exercise 6.7
Calculate the molar solubility and the mass solubility for Hg2Cl2, given 
the following solubility reaction and Ksp value.

.( ) ( ) ( ) Ks aq aq 1 2 10Hg Cl Hg 2Cl 8
2 2 2

2
sp? #+ =+ - -

Click here to review your answer to this exercise.

Because a solid, such as Pb(IO3)2, does 
not appear in the solubility product ex-
pression, we do not need to keep track of 
its concentration. Remember, however, 
that the Ksp value applies only if there is 
some solid Pb(IO3)2 present at equilib-
rium.

We can express a compound’s solubility in 
two ways: as its molar solubility (mol/L) 
or as its mass solubility (g/L). Be sure to 
express your answer clearly.



227Chapter 6 Equilibrium Chemistry

6G.2 A More Complex Problem—The Common Ion Effect

Calculating the solubility of Pb(IO3)2 in deionized water is a straightfor-
ward problem because the solid’s dissolution is the only source of Pb2+ and 
IO3

- . But what if we add Pb(IO3)2 to a solution of 0.10 M Pb(NO3)2?  
Before we set-up and solve this problem algebraically, think about the sys-
tem’s chemistry and decide whether the solubility of Pb(IO3)2 will increase, 
decrease, or remain the same.

We begin by setting up a table to help us keep track of the concentra-
tions of Pb2+ and IO3

-  as this system moves toward and reaches equilibrium.
Concentrations Pb(IO3)2 (s) ? Pb2+ (aq) + 2 IO3

-  (aq)
Initial solid 0.10 0

Change solid +x +2x
Equilibrium solid 0.10 + x 2x

Substituting the equilibrium concentrations into equation 6.33

( . ) ( ) .x x0 10 2 2 5 102 13#+ = -

and multiplying out the terms on the equation’s left side leaves us with
. .x x4 0 40 2 5 103 2 13#+ = - 6.34

This is a more difficult equation to solve than that for the solubility of 
Pb(IO3)2 in deionized water, and its solution is not immediately obvious. 
We can find a rigorous solution to equation 6.34 using computational soft-
ware packages and spreadsheets, some of which are described in Section 6.J.

How might we solve equation 6.34 if we do not have access to a com-
puter? One approach is to use our understanding of chemistry to simplify 
the problem. From Le Châtelier’s principle we know that a large initial 
concentration of Pb2+ will decrease significantly the solubility of Pb(IO3)2. 
One reasonable assumption is that the initial concentration of Pb2+ is very 
close to its equilibrium concentration. If this assumption is correct, then 
the following approximation is reasonable

[ ] . .x0 10 0 10Pb2 .= ++

Substituting this approximation into equation 6.33 and solving for x gives

( . ) ( ) . .x x0 10 2 0 4 2 5 102 2 13#= = -

.x 7 91 10 7#= -

Before we accept this answer, we must verify that our approximation is rea-
sonable. The difference between the actual concentration of Pb2+, which is 
0.10 + x M, and our assumption that the concentration of Pb2+ is 0.10 M 
is 7.9 × 10–7, or 7.9 × 10–4 % of the assumed concentration. This is a neg-
ligible error. If we accept the result of our calculation, we find that the 
equilibrium concentrations of Pb2+ and IO3

-  are

. . .x x0 10 0 10 2 1 6 10[Pb ] M and [IO ] M62
3 #.= + = =+ - -

Beginning a problem by thinking about 
the likely answer is a good habit to devel-
op. Knowing what answers are reasonable 
will help you spot errors in your calcula-
tions and give you more confidence that 
your solution to a problem is correct.
Because the solution already contains a 
source of Pb2+, we can use Le Châtelier’s 
principle to predict that the solubility of 
Pb(IO3)2 is smaller than that in our previ-
ous problem.

There are several approaches to solving cu-
bic equations, but none are computation-
ally easy using paper and pencil.

.
( . ) .

.
.

.

x

100

0 10
0 10 0 10

100

0 10
7 91 10 100

7 91 10

%error assumed
actual assumed

%

7

4

#

#

#
#

#

=
-

=
+ -

=

=

-

-
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The molar solubility of Pb(IO3)2 is equal to the additional concentration of 
Pb2+ in solution, or 7.9 × 10–4 mol/L. As expected, we find that Pb(IO3)2 
is less soluble in the presence of a solution that already contains one of its 
ions. This is known as the common ion effect.

As outlined in the following example, if an approximation leads to an 
error that is unacceptably large, then we can extend the process of making 
and evaluating approximations.

Example 6.10
Calculate the solubility of Pb(IO3)2 in 1.0 × 10–4 M Pb(NO3)2.

SOLUTION

If we let x equal the change in the concentration of Pb2+, then the equi-
librium concentrations of Pb2+ and IO3

-  are

. x x1 0 10 2[Pb ] and [IO ]42
3#= + =+ - -

Substituting these concentrations into equation 6.33 leaves us with

( . ) ( ) .x x1 0 10 2 2 5 104 2 13# #+ =- -

To solve this equation for x, let’s make the following assumption

. .x1 0 10 1 0 10[Pb ] M4 42 # #.= ++ - -

Solving for x gives its value as 2.50× 10–5; however, when we substitute 
this value for x back, we find that the calculated concentration of Pb2+ at 
equilibrium 

. . . .x1 0 10 1 0 10 2 50 10 1 25 10[Pb ] M4 4 5 42 # # # #= + = + =+ - - - -

is 25% greater than our assumption of 1.0× 10–4 M. This error is unrea-
sonably large. 

Rather than shouting in frustration, let’s make a new assumption. Our first 
assumption—that the concentration of Pb2+ is 1.0× 10–4 M—was too 
small. The calculated concentration of 1.25× 10–4 M, therefore, probably 
is a too large, but closer to the correct concentration than was our first as-
sumption. For our second approximation, let’s assume that

. .x1 0 10 1 25 10[Pb ] M4 42 # #c= ++ - -

Substituting into equation 6.33 and solving for x gives its value as 
2.24× 10–5. The resulting concentration of Pb2+ is

. . .1 0 10 2 24 10 1 22 10[Pb ] M4 5 42 # # #= + =+ - - -

which differs from our assumption of 1.25× 10–4 M by 2.4%. Because 
the original concentration of Pb2++ is given to two significant figure, this 
is a more reasonable error. Our final solution, to two significant figures, is

. .1 2 10 4 5 10[Pb ] M and [IO ] M4 52
3# #= =+ - - -

One “rule of thumb” when making an 
approximation is that it should not in-
troduce an error of more than ±5%. Al-
though this is not an unreasonable choice, 
what matters is that the error makes sense 
within the context of the problem you are 
solving.
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and the molar solubility of Pb(IO3)2 is 2.2× 10–5 mol/L. This iterative 
approach to solving the problems is known as the method of successive 
approximations.

Practice Exercise 6.8
Calculate the molar solubility for Hg2Cl2 in 0.10 M NaCl and compare 
your answer to its molar solubility in deionized water (see Practice Exer-
cise 6.7). 
Click here to review your answer to this exercise.

6G.3 A Systematic Approach to Solving Equilibrium Problems

Calculating the solubility of Pb(IO3)2 in a solution of Pb(NO3)2 is more 
complicated than calculating its solubility in deionized water. The calcula-
tion, however, is still relatively easy to organize and the simplifying assump-
tion are fairly obvious. This problem is reasonably straightforward because 
it involves only one equilibrium reaction and one equilibrium constant. 

Determining the equilibrium composition of a system with multiple 
equilibrium reactions is more complicated. In this section we introduce a 
systematic approach to setting-up and solving equilibrium problems. As 
shown in Table 6.1, this approach involves four steps.

In addition to equilibrium constant expressions, two other equations 
are important to this systematic approach to solving an equilibrium prob-
lem. The first of these equations is a mass balance equation, which simply 
is a statement that matter is conserved during a chemical reaction. In a solu-
tion of acetic acid, for example, the combined concentrations of the con-
jugate weak acid, CH3COOH, and the conjugate weak base, CH3COO–, 
must equal acetic acid’s initial concentration, CCH COOH3 .

Table 6.1 Systematic Approach to Solving Equilibrium Problems
Step 1: Write all relevant equilibrium reactions and equilibrium constant expressions.
Step 2: Count the unique species that appear in the equilibrium constant expressions; 

these are your unknowns. You have enough information to solve the problem 
if the number of unknowns equals the number of equilibrium constant expres-
sions. If not, add a mass balance equation and/or a charge balance equation. 
Continue adding equations until the number of equations equals the number 
of unknowns. 

Step 3: Combine your equations and solve for one unknown. Whenever possible, sim-
plify the algebra by making appropriate assumptions. If you make an assump-
tion, set a limit for its error. This decision influences your evaluation of the 
assumption.

Step 4: Check your assumptions. If any assumption proves invalid, return to the pre-
vious step and continue solving. The problem is complete when you have an 
answer that does not violate any of your assumptions.
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C [CH COOH] [CH COO ]CH COOH 3 33 = + -

The second equation is a charge balance equation, which requires 
that the total positive charge from the cations equal the total negative charge 
from the anions. Mathematically, the charge balance equation is 

( ) [ ] ( ) [ ]z C z Ai
z

i
i

n

j
z

j
j

m

1 1
=-+

=

-

=

+ -/ /
where [ ]Cz

i
+  and  [ ]Az

j
-  are, respectively, the concentrations of the ith cat-

ion and the jth anion, and ( )z i
+  and ( )z j

-  are the charges for the ith cation 
and the jth anion. Every ion in solution, even if it does not appear in an 
equilibrium reaction, must appear in the charge balance equation. For ex-
ample, the charge balance equation for an aqueous solution of Ca(NO3)2 is

2 [Ca ] [H O ] [OH ] [NO ]2
3 3# + = ++ + - -

Note that we multiply the concentration of Ca2+ by two and that we in-
clude the concentrations of H3O+ and OH–. 

Example 6.11
Write mass balance equations and a charge balance equation for a 0.10 M 
solution of NaHCO3.

SOLUTION

It is easier to keep track of the species in solution if we write down the 
reactions that define the solution’s composition. These reactions are the 
dissolution of a soluble salt

( ) ( ) ( )s aq aqNaHCO Na HCO3 3$ ++ -

and the acid–base dissociation reactions of HCO3
-  and H2O

( ) ( ) ( ) ( )aq l aq aqHCO H O H O CO3 2 3 3
2?+ +- + -

( ) ( ) ( ) ( )aq l aq aqHCO H O OH H CO3 2 2 3?+ +- -

( ) ( ) ( )l aq aq2H O H O OH2 3? ++ -

The mass balance equations are 

0.10 M [H CO ] [HCO ] [CO ]2 3 3 3
2= + +- -

0.10 M [Na ]= +

and the charge balance equation is
[Na ] [H O ] [OH ] [HCO ] 2 [CO ]3 3 3

2#+ = + ++ + - - -

You may recall from Chapter 2 that this is 
the difference between a formal concen-
tration and a molar concentration. The 
variable C represents a formal concentra-
tion.
A charge balance is a conservation of a 
charge. The minus sign in front of the 
summation term on the right side of the 
charge balance equation ensures that both 
summations are positive.

There are situations where it is impossible 
to write a charge balance equation because 
we do not have enough information about 
the solution’s composition. For example, 
suppose we fix a solution’s pH using a 
buffer. If the buffer’s composition is not 
specified, then we cannot write a charge 
balance equation.

Practice Exercise 6.9
Write appropriate mass balance and charge balance equations for a solu-
tion containing 0.10 M KH2PO4 and 0.050 M Na2HPO4.
Click here to review your answer to this exercise.
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6G.4 pH of a Monoprotic Weak Acid

To illustrate the systematic approach to solving equilibrium problems, let’s 
calculate the pH of 1.0 M HF. Two equilibrium reactions affect the pH. 
The first, and most obvious, is the acid dissociation reaction for HF

( ) ( ) ( ) ( )aq l aq aqHF H O H O F2 3?+ ++ -

for which the equilibrium constant expression is

.K 6 8 10[HF]
[H O ][F ] 4

a
3 #= =

+ -
- 6.35

The second equilibrium reaction is the dissociation of water, which is an 
obvious yet easily neglected reaction

( ) ( ) ( )l aq aq2H O H O OH2 3? ++ -

.K 1 00 10[H O ][OH ] 14
w 3 #= =+ - - 6.36

Counting unknowns, we find four: [HF], [F–], [H3O+], and [OH–]. To 
solve this problem we need two additional equations. These equations are 
a mass balance equation on hydrofluoric acid

.C 1 0[HF] [F ] MHF= + =- 6.37
and a charge balance equation

[H O ] [OH ] [F ]3 = ++ - - 6.38
With four equations and four unknowns, we are ready to solve the prob-

lem. Before doing so, let’s simplify the algebra by making two assumptions. 
Assumption One. Because HF is a weak acid, we know that the solution 
is acidic. For an acidic solution it is reasonable to assume that

[H3O+] >> [OH–]

which simplifies the charge balance equation to
[H O ] [F ]3 =+ - 6.39

Assumption Two. Because HF is a weak acid, very little of it dissociates 
to form F–. Most of the HF remains in its conjugate weak acid form and 
it is reasonable to assume that

[HF] >> [F–]

which simplifies the mass balance equation to
.C 1 0[HF] MHF= = 6.40

For this exercise let’s accept an assumption if it introduces an error of less 
than ±5%.

Substituting equation 6.39 and equation 6.40 into equation 6.35, and 
solving for the concentration of H3O+ gives us

K [HF]
[H O ][F ]

C
[H O ][H O ]

C
[H O ] 6.8 10a

3

HF

3 3

HF

3
2

4#= = = =
+ - + + +

-

Step 1: Write all relevant equilibrium re-
actions and equilibrium constant expres-
sions.

Step 2: Count the unique species that ap-
pear in the equilibrium constant expres-
sions; these are your unknowns. You have 
enough information to solve the problem 
if the number of unknowns equals the 
number of equilibrium constant expres-
sions. If not, add a mass balance equation 
and/or a charge balance equation. Con-
tinue adding equations until the number 
of equations equals the number of un-
knowns. 

Step 3: Combine your equations and 
solve for one unknown. Whenever pos-
sible, simplify the algebra by making ap-
propriate assumptions. If you make an 
assumption, set a limit for its error. This 
decision influences your evaluation the 
assumption.
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( . ) ( . ) .K C 6 8 10 1 0 2 6 10[H O ] 4 2
3 a HF # #= = =+ - -

Before accepting this answer, we must verify our assumptions. The first as-
sumption is that [OH–] is significantly smaller than [H3O+]. Using equa-
tion 6.36, we find that

.
. .K
2 6 10

1 00 10 3 8 10[OH ] [H O ] 2

14
13

3

w

#
# #= = =-

+ -

-
-

Clearly this assumption is acceptable. The second assumption is that [F–] is 
significantly smaller than [HF]. From equation 6.39 we have

[F–] = 2.6 × 10–2 M

Because [F–] is 2.60% of CHF, this assumption also is acceptable. Given that 
[H3O+] is 2.6 × 10–2 M, the pH of 1.0 M HF is 1.59.

How does the calculation change if we require that the error introduced 
in our assumptions be less than ±1%? In this case we no longer can assume 
that [HF] >> [F–] and we cannot simplify the mass balance equation. Solv-
ing the mass balance equation for [HF]

[ ]C C[HF] [F ] H OHF HF 3= - = -- +

and substituting into the Ka expression along with equation 6.39 gives

K C [H O ]
[H O ]

a
HF 3

3
2

=
- +

+

Rearranging this equation leaves us with a quadratic equation

K K C 0[H O ] [H O ]3
2

a 3 a HF+ - =+ +

which we solve using the quadratic formula

x a
b b ac

2
42!

=
- -

where a, b, and c are the coefficients in the quadratic equation 

ax bx c 02+ + =

Solving a quadratic equation gives two roots, only one of which has chemi-
cal significance. For our problem, the equation’s roots are

( ) ( )
. ( . ) ( ) ( ) ( . )x 2 1

6 8 10 6 8 10 4 1 6 8 104 4 2 4# ! # #
=
- - -- - -

. .x 2
6 8 10 5 22 104 2# ! #= -

- -

. .x 2 57 10 2 64 10or2 2# #= -- -

Only the positive root is chemically significant because the negative root 
gives a negative concentration for H3O+. Thus, [H3O+] is 2.57 × 10–2 M 
and the pH is 1.59.

Step 4: Check your assumptions. If any 
assumption proves invalid, return to the 
previous step and continue solving. The 
problem is complete when you have an 
answer that does not violate any of your 
assumptions.
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You can extend this approach to calculating the pH of a monoprotic 
weak base by replacing Ka with Kb, replacing CHF with the weak base’s 
concentration, and solving for [OH–] in place of [H3O+].

Practice Exercise 6.10
Calculate the pH of 0.050 M NH3. State any assumptions you make in 
solving the problem, limiting the error for any assumption to ±5%. The 
Kb value for NH3 is 1.75 × 10–5.
Click here to review your answer to this exercise.

6G.5 pH of a Polyprotic Acid or Base

A more challenging problem is to find the pH of a solution that contains 
a polyprotic weak acid or one of its conjugate species. As an example, con-
sider the amino acid alanine, whose structure is shown in Figure 6.12. The  
ladder diagram in Figure 6.13 shows alanine’s three acid–base forms and 
their respective areas of predominance. For simplicity, we identify these 
species as H2L+, HL, and L–. 

PH OF 0.10 M ALANINE HYDROCHLORIDE (H2L+)

Alanine hydrochloride is the salt of the diprotic weak acid H2L+ and Cl–. 
Because H2L+ has two acid dissociation reactions, a complete systematic 
solution to this problem is more complicated than that for a monoprotic 
weak acid. The ladder diagram in Figure 6.13 helps us simplify the problem. 
Because the areas of predominance for H2L+ and L– are so far apart, we can 
assume that a solution of H2L+ will not contain a significant amount of 
L–. As a result, we can treat H2L+ as though it is a monoprotic weak acid. 
Calculating the pH of 0.10 M alanine hydrochloride, which is 1.72, is left 
to the reader as an exercise.

PH OF 0.10 M SODIUM ALANINATE (L–)

The alaninate ion is a diprotic weak base. Because L– has two base disso-
ciation reactions, a complete systematic solution to this problem is more 
complicated than that for a monoprotic weak base. Once again, the ladder 
diagram in Figure 6.13 helps us simplify the problem. Because the areas of 
predominance for H2L+ and L– are so far apart, we can assume that a solu-
tion of L– will not contain a significant amount of H2L+. As a result, we 
can treat L– as though it is a monoprotic weak base. Calculating the pH of 
0.10 M sodium alaninate, which is 11.42, is left to the reader as an exercise.

PH OF 0.1 M ALANINE (HL)

Finding the pH of a solution of alanine is more complicated than our 
previous two examples because we cannot ignore the presence of either 

Figure 6.12 Structure of the ami-
no acid alanine, which has pKa val-
ues of 2.348 (–COOH) and 9.867 
(–NH2).

H2N CH C

CH3
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O

Figure 6.13 Ladder diagram for alanine.
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H2L+ or L–. To calculate the solution’s pH we must consider alanine’s acid 
dissociation reaction

( ) ( ) ( ) ( )aq l aq aqHL H O H O L2 3?+ ++ -

and its base dissociation reaction

( ) ( ) ( ) ( )aq l aq aqHL H O OH H L22 ?+ +- +

and, as always, we must also consider the dissociation of water

( ) ( ) ( )l aq aq2H O H O OH2 3? ++ -

This leaves us with five unknowns—[H2L+], [HL], [L–], [H3O+], and 
[OH–]—for which we need five equations. These equations are Ka2 and 
Kb2 for alanine

K [HL]
[H O ][L ]

a2
3=

+ -

K K
K

[HL]
[OH ][H L ]

b2
a1

w 2= =
- +

the Kw equation

[ ] [ ]K H O OHw 3= + -

a mass balance equation for alanine

C [H L ] [HL] [L ]HL 2= + ++ -

and a charge balance equation

[H L ] [H O ] [OH ] [L ]2 3+ = ++ + - -

Because HL is a weak acid and a weak base, it seems reasonable to assume 
that little of it will dissociate and that

[HL] >> [H2L+] + [L–]

which allows us to simplify the mass balance equation to

C [HL]HL=

Next we solve Kb2 for [H2L+]

[ ]K
K

K K
C[H L ] OH

[HL] [H O ][HL] [H O ]
2

a1

w

a1

3

a1

HL 3= = =+
-

+ +

and solve Ka2 for [L–]
K K C[L ] [H O ]

[HL]
[H O ]3

a2

3

a2 HL= =-
+ +

Substituting these equations for [H2L+] and [L–], and the equation for Kw, 
into the charge balance equation give us

K
C K K C[H O ] H O [H O ] [H O ]a1

HL 3
3

3

w

3

a2 HL+ = +
+

+
+ +

which we simplify to



235Chapter 6 Equilibrium Chemistry

K
C K K C1 1[H O ] [H O ]3

a1

HL

3
w a2 HL+ = ++

+a ^k h

K
C

K C K
C K

K K C K
1

[H O ] 2
3

a1

HL

a2 HL w

HL a1

a1 a2 HL w
=

+

+
= +

++ ^ ^h h

C K
K K C K K[H O ]3

HL a1

a1 a2 HL a1 w
= +

++ ^ h
We can further simplify this equation if Ka1Kw << Ka1Ka2CHL, and if 
Ka1 << CHL, leaving us with

K K[H O ]3 a1 a2=+

For a solution of 0.10 M alanine the [H3O+] is

( . ) ( . ) .4 487 10 1 358 10 7 806 10[H O ] M3 10 7
3 # # #= =+ - - -

or a pH of 6.11. 

Practice Exercise 6.11
Verify that each assumption in our solution for the pH of 0.10 M alanine 
is reasonable, using ±5% as the limit for the acceptable error. 
Click here to review your answer to this exercise.

6G.6 Effect of Complexation on Solubility

One method for increasing a precipitate’s solubility is to add a ligand that 
forms soluble complexes with one of the precipitate’s ions. For example, the 
solubility of AgI increases in the presence of NH3 due to the formation of 
the soluble Ag(NH )3 2

+  complex. As a final illustration of the systematic 
approach to solving equilibrium problems, let’s calculate the molar solubil-
ity of AgI in 0.10 M NH3.

We begin by writing the relevant equilibrium reactions, which includes 
the solubility of AgI, the acid–base chemistry of NH3 and H2O, and the 
metal-ligand complexation chemistry between Ag+ and NH3.

( ) ( ) ( )s aq aqAgI Ag I? ++ -

( ) ( ) ( ) ( )aq l aq aqNH H O OH NH3 2 4?+ +- +

( ) ( ) ( )l aq aq2H O H O OH2 3? ++ -

( ) ( ) ( )aq aq aqAg 2NH Ag(NH )3 3 2?++ +

This leaves us with seven unknowns—[Ag+], [I–], [NH3], [NH ]4
+ , [OH–], 

[H3O+], and [ Ag(NH )3 2
+ ]—and a need for seven equations. Four of the 

equations we need to solve this problem are the equilibrium constant ex-
pressions

.K 8 3 10[Ag ][I ] 17
sp #= =+ - - 6.41
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.K 1 75 10[NH ]
[NH ][OH ] 5

b
3

4 #= =
+ -

- 6.42

.K 1 00 10[H O ][OH ] 14
w 3 #= =+ - - 6.43

.1 7 10[Ag ][NH ]
[Ag(NH ) ]

2
7

3
2

3 2
#b = =+

+

6.44

We still need three additional equations. The first of these equations is a 
mass balance for NH3.

C [NH ] [NH ] 2 [Ag(NH ) ]NH 3 4 3 23 #= + ++ + 6.45
In writing this mass balance equation we multiply the concentration of 
Ag(NH )3 2

+  by two since there are two moles of NH3 per mole of Ag(NH )3 2
+ . 

The second additional equation is a mass balance between iodide and silver. 
Because AgI is the only source of I– and Ag+, each iodide in solution must 
have an associated silver ion, which may be Ag+ or Ag(NH )3 2

+ ; thus
[I ] [Ag ] [Ag(NH ) ]3 2= +- + + 6.46

Finally, we include a charge balance equation.
[Ag ] [Ag(NH ) ] [NH ] [H O ] [OH ] [I ]3 2 4 3+ + + = ++ + + + - - 6.47

Although the problem looks challenging, three assumptions greatly 
simplify the algebra. 

Assumption One. Because the formation of the Ag(NH )3 2
+  complex is 

so favorable (b2 is 1.7 × 107), there is very little free Ag+ in solution and 
it is reasonable to assume that

[Ag+] << [ Ag(NH )3 2
+ ]

Assumption Two. Because NH3 is a weak base we may reasonably assume 
that most uncomplexed ammonia remains as NH3; thus

[ NH4
+ ] << [NH3]

Assumption Three. Because Ksp for AgI is significantly smaller than b2 for 
Ag(NH )3 2

+ , the solubility of AgI probably is small enough that very little 
ammonia is needed to form the metal–ligand complex; thus 

[ Ag(NH )3 2
+ ] << [NH3]

As we use these assumptions to simplify the algebra, let’s set ±5% as the 
limit for error.

Assumption two and assumption three suggest that the concentration of 
NH3 is much larger than the concentrations of either NH4

+  or Ag(NH )3 2
+ , 

which allows us to simplify the mass balance equation for NH3 to
C [NH ]NH 33 = 6.48

Finally, using assumption one, which suggests that the concentration of 
Ag(NH )3 2

+  is much larger than the concentration of Ag+, we simplify the 
mass balance equation for I– to
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[I ] [Ag(NH ) ]3 2=- + 6.49
Now we are ready to combine equations and to solve the problem. We 

begin by solving equation 6.41 for [Ag+] and substitute it into b2 (equa-
tion 6.44), which leaves us with

K [NH ]
[Ag(NH ) ][I ]

2
sp 3

2
3 2

b =
+ -

6.50

Next we substitute equation 6.48 and equation 6.49 into equation 6.50, 
obtaining 

( )K C
[I ]

2 2

2

sp NH3

b =
-

6.51

Solving equation 6.51 for [I–] gives

( . ) ( . ) ( . ) .
C K

0 10 1 7 10 8 3 10 3 76 10
[I ]

M
2

7 17 6

NH sp3

# # #

b= =

=

-

- -

Because one mole of AgI produces one mole of I–, the molar solubility of 
AgI is the same as the [I–], or 3.8 × 10–6 mol/L. 

Before we accept this answer we need to check our assumptions. Sub-
stituting [I–] into equation 6.41, we find that the concentration of Ag+ is

.
. .K

3 76 10
8 3 10 2 2 10[Ag ] [I ] M6

17
11sp

#
# #= = =+

- -

-
-

Substituting the concentrations of I– and Ag+ into the mass balance equa-
tion for iodide (equation 6.46), gives the concentration of Ag(NH )3 2

+  as

. . .3 76 10 2 2 10 3 76 10
[Ag(NH ) ] [I ] [Ag ]

M6 11 11

3 2

# # #

= - =

- =

+ - +

- - -  

Our first assumption that [Ag+] is significantly smaller than the 
[ Ag(NH )3 2

+ ] is reasonable. 
Substituting the concentrations of Ag+ and Ag(NH )3 2

+  into equation 
6.44 and solving for [NH3], gives

( . ) ( . )
. .2 2 10 1 7 10

3 76 10 0 10[NH ] [Ag ]
[Ag(NH ) ]

M11 7

6

3
2

3 2

# #
#

b
= = =+

+

-

-

From the mass balance equation for NH3 (equation 6.44) we see that 
[ NH4

+ ] is negligible, verifying our second assumption that [ NH4
+ ] is sig-

nificantly smaller than [NH3]. Our third assumption that [ Ag(NH )3 2
+ ] is 

significantly smaller than [NH3] also is reasonable. 

6H Buffer Solutions
Adding as little as 0.1 mL of concentrated HCl to a liter of H2O shifts the 
pH from 7.0 to 3.0. Adding the same amount of HCl to a liter of a solution 
that 0.1 M in acetic acid and 0.1 M in sodium acetate, however, results in a 
negligible change in pH. Why do these two solutions respond so differently 
to the addition of HCl? 

Did you notice that our solution to this 
problem did not make use of equation 
6.47, the charge balance equation? The 
reason for this is that we did not try to 
solve for the concentration of all seven 
species. If we need to know the reaction 
mixture’s complete composition at equi-
librium, then we will need to incorporate 
the charge balance equation into our so-
lution.
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A mixture of acetic acid and sodium acetate is one example of an acid–
base buffer. To understand how this buffer works to limit the change in 
pH, we need to consider its acid dissociation reaction

( ) ( ) ( ) ( )aq l aq aqCH COOH H O H O CH COO3 2 3 3?+ ++ -

and its corresponding acid dissociation constant

.K 1 75 10[CH COOH]
[CH COO ][H O ] 5

a
3

3 3 #= =
- +

- 6.52

Taking the negative log of the terms in equation 6.52 and solving for pH 
leaves us with the result shown here.

.

log

log

K

4 76

pH p [CH COOH]
[CH COO ]

pH [CH COOH]
[CH COO ]

a
3

3

3

3

= +

= +

-

-
6.53

Buffering occurs because of the logarithmic relationship between pH and 
the concentration ratio of acetate and acetic acid. Here is an example to il-
lustrate this point. If the concentrations of acetic acid and acetate are equal, 
the buffer’s pH is 4.76. If we convert 10% of the acetate to acetic acid, by 
adding a strong acid, the ratio [CH3COO–]/[CH3COOH] changes from 
1.00 to 0.818, and the pH decreases from 4.76 to 4.67—a decrease of only 
0.09 pH units.

6H.1 Systematic Solution to Buffer Problems

Equation 6.53 is written in terms of the equilibrium concentrations of 
CH3COOH and of CH3COO– . A more useful relationship relates a buf-
fer’s pH to the initial concentrations of the weak acid and the weak base. We 
can derive a general buffer equation by considering the following reactions 
for a weak acid, HA, and the soluble salt of its conjugate weak base, NaA.

( ) ( ) ( )s aq aqNaA Na A$ ++ -

( ) ( ) ( ) ( )aq l aq aqHA H O H O A2 3?+ ++ -

( ) ( ) ( )l aq aq2H O H O OH2 3? ++ -

Because the concentrations of Na+, A–, HA, H3O+, and OH– are un-
known, we need five equations to define the solution’s composition. Two of 
these equations are the equilibrium constant expressions for HA and H2O.

K [HA]
[H O ][A ]

a
3=

+ -

6.54

K [H O ][OH ]w 3= + -

The remaining three equations are mass balance equations for HA and Na+

C C [HA] [A ]HA NaA+ = + - 6.55

C [Na ]NaA = + 6.56

You may recall that we developed these 
same equations in section 6F when we 
introduced ladder diagrams

The ratio [CH3COO–]/[CH3COOH] 
becomes 0.9/1.1 = 0.818 and the pH be-
comes

pH = 4.76 + log(0.818) = 4.67
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and a charge balance equation
[H O ] [Na ] [OH ] [A ]3 + = ++ + - - 6.57

Substituting equation 6.56 into equation 6.57 and solving for [A–] gives
C[A ] [OH ] [H O ]NaA 3= - +- - + 6.58

Next, we substitute equation 6.58 into equation 6.55, which gives the con-
centration of HA as

C[HA] [OH ] [H O ]HA 3= + -- + 6.59
Finally, we substitute equations 6.58 and 6.59 into equation 6.54 and solve 
for pH to arrive at a general equation for a buffer’s pH.

logK C
CpH p [OH ] [H O ]

[OH ] [H O ]
a

HA 3

NaA 3= +
+ -
- +

- +

- +

If the initial concentrations of the weak acid, CHA, and the weak base, CNaA, 
are significantly greater than [H3O+] and [OH–], then we can simplify the 
general equation to the Henderson–Hasselbalch equation.

logK C
CpH p a

HA

NaA= + 6.60

As outlined below, the Henderson–Hasselbalch equation provides a simple 
way to calculate the pH of a buffer, and to determine the change in pH 
upon adding a strong acid or strong base.

Example 6.12
Calculate the pH of a buffer that is 0.020 M in NH3 and 0.030 M in 
NH4Cl. What is the pH after we add 1.0 mL of 0.10 M NaOH to 0.10 L 
of this buffer?

SOLUTION

The acid dissociation constant for NH4
+  is 5.70 × 10–10, which is a pKa 

of 9.24. Substituting the initial concentrations of NH3 and NH4Cl into 
equation 6.60 and solving, we find that the buffer’s pH is

. .
. .log9 24 0 030

0 020 9 06pH= + =

Adding NaOH converts a portion of the NH4
+  to NH3 as a result of the 

following reaction

( ) ( ) ( ) ( )aq aq l aqNH OH H O NH4 2 3?+ ++ -

Because this reaction’s equilibrium constant is so large (it is 5.7 × 104), we 
may treat the reaction as if it goes to completion. The new concentrations 
of NH4

+  and NH3 are

 . .
( . ) ( . ( . ) ( . .

C V

C 0 10 1 0 10
0 030 0 10 0 10 1 0 10 0 029

mol NH mol OH

L L
M L) M L) M3

3

NH
total

4

NH

4

4 #
#

= -

=
+
-

=

+ -

-

-

+

+

Lawrence Henderson (1878-1942) 
first developed a relationship between 
[H3O+], [HA], and [A–] while studying 
the buffering of blood. Kurt Hasselbalch 
(1874-1962) modified Henderson’s equa-
tion by transforming it to the logarithmic 
form shown in equation 6.60.
The assumptions that lead to equation 
6.60 result in a minimal error in pH 
(<±5%) for larger concentrations of HA 
and A–, for concentrations of HA and 
A– that are similar in magnitude, and for 
weak acid’s with pKa values closer to 7. For 
most problems in this textbook, equation 
6.60 provides acceptable results. Be sure, 
however, to test your assumptions.
For a discussion of the Henderson–Has-
selbalch equation, including the error 
inherent in equation 6.60, see Po, H. 
N.; Senozan, N. M. “The Henderson–
Hasselbalch Equation: Its History and 
Limitations,” J. Chem. Educ. 2001, 78, 
1499–1503.

With a pH of 9.06, the concentration of 
H3O+ is 8.71×10–10 and the concentra-
tion of OH– is 1.15×10–5. Because both 
of these concentrations are much smaller 
than either CNH3 or CNH4Cl, the ap-
proximations used to derive equation 6.60 
are reasonable.

The equilibrium constant for this reaction 
is (Kb)–1.
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. .
( . ) ( . ( . ) ( . .

C V

C 0 10 1 0 10
0 020 0 10 0 10 1 0 10 0 021

mol NH mol OH

L L
M L) M L) M

3

3

3

NH
total

NH

3

3 #
#

= +

=
+
+

=

-

-

-

Substituting these concentrations into the equation 6.60 gives a pH of

. .
. .log9 24 0 029

0 021 9 10pH= + =

Note that adding NaOH increases the pH 
from 9.06 to 9.10. As we expect, adding  a 
base makes the pH more basic. Checking 
to see that the pH changes in the right 
direction is one way to catch a calculation 
error.

Practice Exercise 6.12
Calculate the pH of a buffer that is 0.10 M in KH2PO4 and 0.050 M 
in Na2HPO4. What is the pH after we add 5.0 mL of 0.20 M HCl to 
0.10 L of this buffer. Use Appendix 11 to find the appropriate Ka value. 
Click here to review your answer to this exercise

We can use a multiprotic weak acid to prepare buffers at as many dif-
ferent pH’s as there are acidic protons, with the Henderson–Hasselbalch 
equation applying in each case. For example, for malonic acid (pKa1 = 2.85 
and pKa1 = 5.70) we can prepare buffers with pH values of

. log C
C2 85pH

H M

HM

2

= +
-

. log C
C5 70pH

HM

M2

= +
-

-

where H2M, HM– and M2– are malonic acid’s different acid–base forms.
Although our treatment of buffers is based on acid–base chemistry, we 

can extend buffers to equilibria that involve complexation or redox reac-
tions. For example, the Nernst equation for a solution that contains Fe2+ 
and Fe3+ is similar in form to the Henderson-Hasselbalch equation.  

. logE E 0 05916 [Fe ]
[Fe ]

Fe /Fe
o

3

2

3 2= - +

+

+ +

A solution that contains similar concentrations of Fe2+ and Fe3+ is buffered 
to a potential near the standard state reduction potential for Fe3+. We call 
such solutions redox buffers. Adding a strong oxidizing agent or a strong 
reducing agent to a redox buffer results in a small change in potential.

6H.2 Representing Buffer Solutions with Ladder Diagrams

A ladder diagram provides a simple way to visualize a solution’s predomi-
nate species as a function of solution conditions. It also provides a conve-
nient way to show the range of solution conditions over which a buffer is 
effective. For example, an acid–base buffer exists when the concentrations 
of the weak acid and its conjugate weak base are similar. For convenience, 
let’s assume that an acid–base buffer exists when 
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10
1

1
10

[CH COOH]
[CH COO ]

3

3# #
-

Substituting these ratios into the Henderson–Hasselbalch equation 

logK K10
1 1pH p pa a= + = -

logK K1
10 1pH p pa a= + = +

shows that an acid–base buffer works over a pH range of pKa ± 1. 
Using the same approach, it is easy to show that a metal-ligand compl-

exation buffer for MLn exists when

log logK n1 1pL or pLn n! !b= =

where Kn or bn is the relevant stepwise or overall formation constant. For an 
oxidizing agent and its conjugate reducing agent, a redox buffer exists when

. ( )E E n F
RT E n

1 0 05916 at 25 Co o o! # != =

Figure 6.14 shows ladder diagrams with buffer regions for several equilib-
rium systems. 

6H.3 Preparing a Buffer

Buffer capacity is the ability of a buffer to resist a change in pH when we 
add to it a strong acid or a strong base. A buffer’s capacity to resist a change 
in pH is a function of the concentrations of the weak acid and the weak base, 
as well as their relative proportions. The importance of the weak acid’s con-
centration and the weak base’s concentration is obvious. The more moles of 
weak acid and weak base a buffer has, the more strong base or strong acid 
it can neutralize without a significant change in its pH.

Figure 6.14 Ladder diagrams showing buffer regions shaded in grey for (a) an 
acid–base buffer of HF and F–; (b) a metal–ligand complexation buffer of Ca2+ 
and Ca(EDTA)2–; and (c) an oxidation–reduction (redox) buffer of Sn4+ and 
Sn2+.

pH

pKa = 3.17

HF

F–

4.17

2.17

pL

logK1 = 10.69

Ca(EDTA)2-

Ca2+

11.69

9.69

E

Eo = 0.154

Sn2+

Sn4+

0.184

0.124

(a) (b) (c)

pL = –log[L]

Although a higher concentration of buff-
ering agents provides greater buffer capac-
ity, there are reasons for using smaller con-
centrations, including the formation of 
unwanted precipitates and the tolerance 
of biological systems for high concentra-
tions of dissolved salts.
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 The relative proportions of a weak acid and a weak base also affects how 
much the pH changes when we add a strong acid or a strong base. A buffer 
that is equimolar in weak acid and weak base requires a greater amount of 
strong acid or strong base to bring about a one unit change in pH. Con-
sequently, a buffer is most effective against the addition of strong acids or 
strong bases when its pH is near the weak acid’s pKa value.

Buffer solutions are often prepared using standard “recipes” found in 
the chemical literature.3 In addition, there are computer programs and on-
line calculators to aid in preparing buffers.4 Perhaps the simplest way to 
make a buffer, however, is to prepare a solution that contains an appropriate 
conjugate weak acid and weak base, measure its pH, and then adjust the 
pH to the desired value by adding small portions of either a strong acid or 
a strong base.

6I Activity Effects
Careful measurements on the metal–ligand complex Fe(SCN)2+ suggest 
its stability decreases in the presence of inert ions.5 We can demonstrate 
this by adding an inert salt to an equilibrium mixture of Fe3+ and SCN–. 
Figure 6.15a shows the result of mixing together equal volumes of 1.0 mM 
FeCl3 and 1.5 mM KSCN, both of which are colorless. The solution’s red-
dish–orange color is due to the formation of Fe(SCN)2+.

( ) ( ) ( )aq aq aqFe SCN Fe(SCN)3 2?++ - + 6.61

3 See, for example, (a) Bower, V. E.; Bates, R. G. J. Res. Natl. Bur. Stand. (U. S.) 1955, 55, 197–
200; (b) Bates, R. G. Ann. N. Y. Acad. Sci. 1961, 92, 341–356; (c) Bates, R. G. Determination 
of pH, 2nd ed.; Wiley-Interscience: New York, 1973.

4 (a) Lambert, W. J. J. Chem. Educ. 1990, 67, 150–153; (b) http://www.bioinformatics.org/
JaMBW/5/4/index.html.

5 Lister, M. W.; Rivington, D. E. Can. J. Chem. 1995, 33, 1572–1590.

A good “rule of thumb” when choosing a 
buffer is to select one whose reagents have 
a pKa value close to your desired pH. 

Figure 6.15 The effect of a inert salt on a reac-
tion’s equilibrium position is shown by the so-
lutions in these two beakers. The beaker on the 
left contains equal volumes of 1.0 mM FeCl3 
and 1.5 mM KSCN. The solution’s color is due 
to the formation of the metal–ligand complex 
Fe(SCN)2+. Adding 10 g of KNO3 to the bea-
ker on the left produces the result shown on 
the right. The lighter color suggests that there 
is less Fe(SCN)2+ as a result of the equilibrium 
in reaction 6.61 shifting to the left. (a) (b)

The 1mM FeCl3 also contains a few drops 
of concentrated HNO3 to prevent the 
precipitation of Fe(OH)3.
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Adding 10 g of KNO3 to the solution and stirring to dissolve the solid, pro-
duces the result shown in Figure 6.15b. The solution’s lighter color suggests 
that adding KNO3 shifts reaction 6.61 to the left, decreasing the concen-
tration of Fe(SCN)2+ and increasing the concentrations of Fe3+ and SCN–. 
The result is a decrease in the complex’s formation constant, K1.

K [Fe ][SCN ]
[Fe(SCN) ]

1 3

2

= + -

+

6.62

Why should adding an inert electrolyte affect a reaction’s equilibrium 
position? We can explain the effect of KNO3 on the formation of Fe(SCN)2+ 
if we consider the reaction on a microscopic scale. The solution in Figure 
6.15b contains a variety of cations and anions: Fe3+, SCN–, K+, NO3

- , 
H3O+, and OH–. Although the solution is homogeneous, on average, there 
are slightly more anions in regions near the Fe3+ ions, and slightly more 
cations in regions near the SCN– ions. As shown in Figure 6.16, each Fe3+ 

ion and each SCN– ion is surrounded by an ionic atmosphere of opposite 
charge (d– and d+) that partially screen the ions from each other. Because 
each ion’s apparent charge at the edge of its ionic atmosphere is less than 
its actual charge, the force of attraction between the two ions is smaller. 
As a result, the formation of Fe(SCN)2+ is slightly less favorable and the 
formation constant in equation 6.62 is slightly smaller. Higher concentra-
tions of KNO3 increase d– and d+, resulting in even smaller values for the 
formation constant.

Fe3+ SCN–

ionic atmosphere

I+I–

charge

distance
0

–1

0

+3

distance

charge

Figure 6.16 Ions of Fe3+ and SCN– are surrounded by ionic atmospheres with net 
charges of d– and d+. Because of these ionic atmospheres, each ion’s apparent charge 
at the edge of its ionic atmosphere is less than the ion’s actual charge. 
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IONIC STRENGTH

To factor the concentration of ions into the formation constant for 
Fe(SCN)2+, we need a way to express that concentration in a meaningful 
way. Because both an ion’s concentration and its charge are important, we 
define the solution’s ionic strength, n as

c z2
1

i i
i

n
2

1
n=

=

/
where ci and zi are the concentration and charge of the ith ion. 

Example 6.13
Calculate the ionic strength of a solution of 0.10 M NaCl. Repeat the 
calculation for a solution of 0.10 M Na2SO4.

SOLUTION

The ionic strength for 0.10 M NaCl is

( ) ( )2
1 1 1[Na ] [Cl ]2 2# #n= + + -+ -" ,

( . ) ( ) ( . ) ( ) .2
1 0 10 1 0 10 1 0 10 M2 2# #n= + + - =" ,

For 0.10 M Na2SO4 the ionic strength is

( ) ( )2
1 1 2[Na ] [SO ]2 2

4
2# #n= + + -+" ,

( . ) ( ) ( . ) ( ) .2
1 0 20 1 0 10 2 0 30 M2 2# #n= + + - =" ,

Note that the unit for ionic strength is molarity, but that a salt’s ionic 
strength need not match its molar concentration. For a 1:1 salt, such as 
NaCl, ionic strength and molar concentration are identical. The ionic 
strength of a 2:1 electrolyte, such as Na2SO4, is three times larger than the 
electrolyte’s molar concentration.

ACTIVITY AND ACTIVITY COEFFICIENTS

Figure 6.15 shows that adding KNO3 to a mixture of Fe3+ and SCN– de-
creases the formation constant for Fe(SCN)2+. This creates a contradiction. 
Earlier in this chapter we showed that there is a relationship between a 
reaction’s standard-state free energy, DGo, and its equilibrium constant, K.

° lnG RT K3 =-

Because a reaction has only one standard-state, its equilibrium constant 
must be independent of solution conditions. Although ionic strength af-
fects the apparent formation constant for Fe(SCN)2+, reaction 6.61 must 
have an underlying thermodynamic formation constant that is independent 
of ionic strength. 

In calculating the ionic strengths of these 
solutions we are ignoring the presence 
of H3O+ and OH–, and, in the case of 
Na2SO4, the presence of HSO4

-  from 
the base dissociation reaction of SO2

4
- .

In the case of 0.10 M NaCl, the concentra-
tions of H3O+ and OH– are 1.0 × 10–7, 
which is significantly smaller than the 
concentrations of Na+ and Cl–.

Because SO2
4
-  is a very weak base 

(Kb = 1.0 × 10–12), the solution is only 
slightly basic (pH = 7.5), and the concen-
trations of H3O+, OH–, and HSO4

-  are 
negligible.
Although we can ignore the presence 
of H3O+, OH–, and HSO4

-  when we 
calculate the ionic strength of these two 
solutions, be aware that an equilibrium re-
action can generate ions that might affect 
the solution’s ionic strength.
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The apparent formation constant for Fe(SCN)2+, as shown in equa-
tion 6.62, is a function of concentrations. In place of concentrations, we 
define the true thermodynamic equilibrium constant using activities. The 
activity of species A, aA, is the product of its concentration, [A], and a 
solution-dependent activity coefficient, cA.

[ ]a AA Ac=

The true thermodynamic formation constant for Fe(SCN)2+, therefore, is

K a a
a

[Fe ] [SCN ]
[Fe(SCN) ]

1
Fe SCN

Fe(SCN)
3

Fe SCN

2
Fe(SCN)

3

2

3

2

c c
c

= = + -

+

+ -

+

+ -

+

A species’ activity coefficient corrects for any deviation between its 
physical concentration and its ideal value. For a gas, a pure solid, a pure 
liquid, or a non-ionic solute, the activity coefficient is approximately one 
under most reasonable experimental conditions. For a reaction that in-
volves only these species, the difference between activity and concentration 
is negligible. The activity coefficient for an ion, however, depends on the 
solution’s ionic strength, the ion’s charge, and the ion’s size. It is possible to 
estimate activity coefficients using the extended Debye-Hückel equation

.
.log z

1 3 3
0 51

A
A

A
2

# #
# #

c
a n

n
=

+
- 6.63

where zA is the ion’s charge, aA is the hydrated ion’s effective diameter in 
nanometers (Table 6.2), n is the solution’s ionic strength, and 0.51 and 3.3 
are constants appropriate for an aqueous solution at 25 oC. A hydrated ion’s 

For a gas the proper terms are fugacity and 
fugacity coefficient, instead of activity and 
activity coefficient.

Unless otherwise specified, the equilib-
rium constants in the appendices are ther-
modynamic equilibrium constants.

Table 6.2 Effective Diameters (a) for Selected Ions
Ion Effective Diameter (nm)

H3O+ 0.9
Li+ 0.6
Na+, IO3

- , HSO3
- , HCO3

- , H PO2 4
- 0.45

OH–, F–, SCN–, HS–, ClO3
- , ClO4

- , MnO4
- 0.35

K+, Cl–, Br–, I–, CN–, NO2
- , NO3

- 0.3
Cs+, Tl+, Ag+, NH4

+ 0.25
Mg2+, Be2+ 0.8
Ca2+, Cu2+, Zn2+, Sn2+, Mn2+, Fe2+, Ni2+, Co2+ 0.6
Sr2+, Ba2+, Cd2+, Hg2+, S2– 0.5
Pb2+, SO4

2- , SO3
2- 0.45

Hg2
2+ , SO4

2- , S O2 3
2- , CrO4

2- , HPO4
2- 0.40

Al3+, Fe3+, Cr3+ 0.9
PO4

3- , Fe(CN) 63- 0.4
Zr4+, Ce4+, Sn4+ 1.1
Fe(CN) 6

4- 0.5
Source: Kielland, J. J. Am. Chem. Soc. 1937, 59, 1675–1678.
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effective radius is the radius of the ion plus those water molecules closely 
bound to the ion. The effective radius is greater for smaller, more highly 
charged ions than it is for larger, less highly charged ions. 

Several features of equation 6.63 deserve our attention. First, as the ion-
ic strength approaches zero an ion’s activity coefficient approaches a value of 
one. In a solution where n =  0, an ion’s activity and its concentration are 
identical. We can take advantage of this fact to determine a reaction’s ther-
modynamic equilibrium constant by measuring the apparent equilibrium 
constant for several increasingly smaller ionic strengths and extrapolating 
back to an ionic strength of zero. Second, an activity coefficient is smaller, 
and the effect of activity is more important, for an ion with a higher charge 
and a smaller effective radius. Finally, the extended Debye-Hückel equa-
tion provides a reasonable estimate of an ion’s activity coefficient when the 
ionic strength is less than 0.1. Modifications to equation 6.63 extend the 
calculation of activity coefficients to higher ionic strengths.6

INCLUDING ACTIVITY COEFFICIENTS WHEN SOLVING EQUILIBRIUM PROBLEMS

Earlier in this chapter we calculated the solubility of Pb(IO3)2 in deionized 
water, obtaining a result of 4.0 × 10–5 mol/L. Because the only significant 
source of ions is from the solubility reaction, the ionic strength is very low 
and we can assume that c ≈ 1 for both Pb2+ and IO3

- . In calculating the 
solubility of Pb(IO3)2 in deionized water, we do not need to account for 
ionic strength.

But what if we need to know the solubility of Pb(IO3)2 in a solution 
that contains other, inert ions? In this case we need to include activity coef-
ficients in our calculation.

Example 6.14
Calculate the solubility of Pb(IO3)2 in a matrix of 0.020 M Mg(NO3)2.

SOLUTION

We begin by calculating the solution’s ionic strength. Since Pb(IO3)2 is 
only sparingly soluble, we will assume we can ignore its contribution to 
the ionic strength; thus

( . ) ( ) ( . ) ( ) .2
1 0 020 2 0 040 1 0 060 M2 2n= + + - =" ,

Next, we use equation 6.63 to calculate the activity coefficients for Pb2+ 
and IO3

- .

. . .
. ( ) . .log

1 3 3 0 45 0 060
0 51 2 0 060 0 366

2

Pb2

# #
# #

c =
+

- +
=-+

.0 431Pb2c =+

. . .
. ( ) . .log

1 3 3 0 45 0 060
0 51 1 0 060 0 0916

2

IO3

# #
# #

c =
+

- -
=--

6 Davies, C. W. Ion Association, Butterworth: London, 1962.

As is true for any assumption, we need to 
verify that it does not introduce too much 
error into our calculation.
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.0 810IO3c =-

Defining the equilibrium concentrations of Pb2+ and IO3
-  in terms of the 

variable x
Concentrations Pb(IO3)2 (s) ? Pb2+ (aq) + 2 IO3

-  (aq)
Initial solid 0 0

Change solid +x +2x
Equilibrium solid x 2x

and substituting into the thermodynamic solubility product for Pb(IO3)2 
leaves us with

.K a a 2 5 10[Pb ] [IO ]2 2 2 13
sp Pb IO Pb

2
IO 32

3
2

3# # #c c= = =+ - -
+ - + -

( . ) ( ) ( . ) ( ) .K x x0 431 0 810 2 2 5 102 2 13
sp #= = -

. .K x1 131 2 5 103 13
sp #= = -

Solving for x gives 6.0 × 10–5 and a molar solubility of 6.0 × 10–5 mol/L 
for Pb(IO3)2. If we ignore activity, as we did in our earlier calculation, we 
report the molar solubility as 4.0 × 10-5 mol/L. Failing to account for ac-
tivity in this case underestimates the molar solubility of Pb(IO3)2 by 33%.

The solution’s equilibrium composition is
[Pb2+] = 6.0×10–5 M
[ IO3

- ] = 1.2×10–4 M
[Mg2+] = 0.020 M
[ NO3

- ] = 0.040 M
Because the concentrations of both Pb2+ 
and IO3

-  are much smaller than the con-
centrations of Mg2+ and NO3

-  our deci-
sion to ignore the contribution of Pb2+ 
and IO3

-  to the ionic strength is reason-
able.
How do we handle the calculation if 
we can not ignore the concentrations of 
Pb2+ and IO3

-  when calculating the 
ionic strength. One approach is to use 
the method of successive approximations. 
First, we recalculate the ionic strength us-
ing the concentrations of all ions, includ-
ing Pb2+ and IO3

- . Next, we recalculate 
the activity coefficients for Pb2+ and 
IO3
-  using this new ionic strength and 

then recalculate the molar solubility. We 
continue this cycle until two successive 
calculations yield the same molar solubil-
ity within an acceptable margin of error.

Practice Exercise 6.13
Calculate the molar solubility of Hg2Cl2 in 0.10 M NaCl, taking into 
account the effect of ionic strength. Compare your answer to that from 
Practice Exercise 6.8 in which you ignored the effect of ionic strength.
Click here to review your answer to this exercise.

As this example shows, failing to correct for the effect of ionic strength 
can lead to a significant error in an equilibrium calculation. Nevertheless, 
it is not unusual to ignore activities and to assume that the equilibrium 
constant is expressed in terms of concentrations. There is a practical reason 
for this—in an analysis we rarely know the exact composition, much less 
the ionic strength of aqueous samples or of solid samples brought into 
solution. Equilibrium calculations are a useful guide when we develop an 
analytical method; however, it only is when we complete an analysis and 
evaluate the results that can we judge whether our theory matches reality. 
In the end, work in the laboratory is the most critical step in developing a 
reliable analytical method.

6J Using Excel and R to Solve Equilibrium Problems
In solving equilibrium problems we typically make one or more assump-
tions to simplify the algebra. These assumptions are important because they 
allow us to reduce the problem to an equation in x that we can solve by 
simply taking a square-root, a cube-root, or by using the quadratic equa-
tion. Without these assumptions, most equilibrium problems result in a 

This is a good place to revisit the meaning 
of pH. In Chapter 2 we defined pH as

pH log [H O ]3=-
+

Now we see that the correct definition is

[ ]

log

log

apH

pH H O

H O

H O 3

3

3c

=-

=-
+

+

+

Failing to account for the effect of ionic 
strength can lead to a significant error in 
the reported concentration of H3O+. For 
example, if the pH of a solution is 7.00 
and the activity coefficient for H3O+ is 
0.90, then the concentration of H3O+ is 
1.11 × 10–7 M, not 1.00 × 10–7 M, an 
error of +11%. Fortunately, when we de-
velop and carry out an analytical method, 
we are more interested in controlling pH 
than in calculating [H3O+]. As a result, 
the difference between the two definitions 
of pH rarely is of significant concern.

Although we focus here on the use of Ex-
cel and R to solve equilibrium problems, 
you also can use WolframAlpha; for de-
tails, see Cleary, D. A. “Use of WolframAl-
pha in Equilibrium Calculations,” Chem. 
Educator, 2014, 19, 182–186.
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cubic equation (or a higher-order equation) that is more challenging to 
solve. Both Excel and R are useful tools for solving such equations.

6J.1 Excel 

Excel offers a useful tool—the Solver function—for finding the chemically 
significant root of a polynomial equation. In addition, it is easy to solve 
a system of simultaneous equations by constructing a spreadsheet that al-
lows you to test and evaluate multiple solutions. Let’s work through two 
examples.

EXAMPLE 1: SOLUBILITY OF PB(IO3)2 IN 0.10 M PB(NO3)2

In our earlier treatment of this problem we arrived at the following cubic 
equation

. .x x4 0 40 2 5 103 2 13#+ = -

where x is the equilibrium concentration of Pb2+. Although there are sev-
eral approaches for solving cubic equations with paper and pencil, none 
are computationally easy. One approach is to iterate in on the answer by 
finding two values of x, one that leads to a result larger than 2.5×10–13 and 
one that gives a result smaller than 2.5×10–13. With boundaries established 
for the value of x, we shift the upper limit and the lower limit until the 
precision of our answer is satisfactory. Without going into details, this is 
how Excel’s Solver function works.

To solve this problem, we first rewrite the cubic equation so that its 
right-side equals zero.

. .x x4 0 40 2 5 10 03 2 13#+ - =-

Next, we set up the spreadsheet shown in Figure 6.17a, placing the formula 
for the cubic equation in cell B2, and entering our initial guess for x in cell 
B1. Because Pb(IO3)2 is not very soluble, we expect that x is small and set 
our initial guess to 0. Finally, we access the Solver function by selecting 
Solver... from the Tools menu, which opens the Solver Parameters window. 

To define the problem, place the cursor in the box for Set Target Cell 
and then click on cell B2. Select the Value of: radio button and enter 0 in 
the box. Place the cursor in the box for By Changing Cells: and click on cell 

A B
1 x = 0
2 function = 4*b1^3 + 0.4*b1^2 – 2.5e–13

A B
1 x = 7.90565E–07
2 function –5.71156E–19

(a)

(b)

Figure 6.17 Spreadsheet demonstrating the use of 
Excel’s Solver function to find the root of a cubic 
equation. The spreadsheet in (a) shows the cubic 
equation in cell B2 and the initial guess for the value 
of x in cell B1; Excel replaces the formula with its 
equivalent value. The spreadsheet in (b) shows the 
results of running Excel’s Solver function.
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B1. Together, these actions instruct the Solver function to change the value 
of x, which is in cell B1, until the cubic equation in cell B2 equals zero. 

Before we actually solve the function, we need to consider whether 
there are any limitations for an acceptable result. For example, we know 
that x cannot be smaller than 0 because a negative concentration is not 
possible. We also want to ensure that the solution’s precision is acceptable. 
Click on the button labeled Options... to open the Solver Options window. 
Checking the option for Assume Non-Negative forces the Solver to maintain 
a positive value for the contents of cell B1, meeting one of our criteria. Set-
ting the precision requires a bit more thought. The Solver function uses the 
precision to decide when to stop its search, doing so when

100 (%)expected value calculated value precision#- =

where expected value is the target cell’s desired value (0 in this case), calcu-
lated value is the function’s current value (cell B1 in this case), and precision 
is the value we enter in the box for Precision. Because our initial guess of 
x = 0 gives a calculated result of 2.5×10–13, accepting the Solver’s default 
precision of 1×10–6 will stop the search after one cycle. To be safe, let’s 
set the precision to 1×10–18. Click OK and then Solve. When the Solver 
function finds a solution, the results appear in your spreadsheet (see Figure 
6.17b). Click OK to keep the result, or Cancel to return to the original 
values. Note that the answer here agrees with our earlier result of 7.91×10–7 
M for the solubility of Pb(IO3)2.

EXAMPLE 2: PH OF 1.0 M HF

In developing our earlier solution to this problem we began by identifying 
four unknowns and writing out the following four equations.

.K 6 8 10[HF]
[H O ][F ] 4

a
3 #= =

+ -
-

.K 1 00 10[H O ][OH ] 14
w 3 #= =+ - -

C [HF] [F ]HF= + -

[H O ] [OH ] [F ]3 = ++ - -

Next, we made two assumptions that allowed us to simplify the problem to 
an equation that is easy to solve. 

[ ] ( . ) ( . ) .K C 6 8 10 1 0 2 6 10H O 4 2
3 a HF # #= = =+ - -

Although we did not note this at the time, without making assumptions 
the solution to our problem is a cubic equation

[ ] [ ]
( ) [ ]

K
K C K K K 0

H O H O
H O

3 2
3 a 3

a HF w 3 a w

+ -

+ - =

+ +

+ 6.64

that we can solve using Excel’s Solver function. Of course, this assumes that 
we successfully complete the derivation!

Be sure to evaluate the reasonableness of 
Solver’s answer. If necessary, repeat the 
process using a smaller value for the preci-
sion.
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Figure 6.18 Spreadsheet demonstrating the use of Excel to solve a set of simultaneous equations. The spreadsheet 
in (a) shows the initial guess for [H3O+] in the first row, and the formulas that we enter in rows 2–6. Enter the 
formulas in cells B2–B6 and then copy and paste them into the appropriate cells in the remaining columns. As 
shown in (b), Excel replaces the formulas with their equivalent values. The spreadsheet in (c) shows the results 
after our final iteration. See the text for further details.

A B C D
1 pH = 3.00 2.00 1.00

2 [H3O+] = = 10^–b1 = 10^–c1 = 10^–d1
3 [OH-] = = 1e–14/b2 = 1e–14/c2 = 1e–14/d2
4 [F-] = = b2 – b3 = c2 – c3 = d2 – d3
5 [HF] = = (b2 * b4)/6.8e–4 = (c2 * c4)/6.8e–4 = (d2 * d4)/6.8e–4
6 error = b5 + b4 – 1 = c5 + c4 – 1 = d5 + d4 – 1

A B C D
1 pH = 3.00 2.00 1.00

2 [H3O+] = 1.00E-03 1.00E-02 1.00E-1

3 [OH-] = 1.00E–11 1.00E–12 1.00E–13

4 [F-] = 1.00E–03 1.00E–02 1.00E–01

5 [HF] = 0.001470588 0.147058824 14.70588235

6 error -9.98E-01 -8.43E-01 1.38E+01

A B C D
1 pH = 1.59 1.58 1.57

2 [H3O+] = 2.57E-02 2.63E-02 2.69E-02

3 [OH-] = 3.89E-13 3.80E-13 3.72E-13

4 [F-] = 2.57E-02 2.63E-02 2.69E-02

5 [HF] = 0.971608012 1.017398487 1.065347

6 error -2.69E-03 4.37E-02 9.23E-02

(a)

(b)

(c)

Another option is to use Excel to solve the four equations simultane-
ously by iterating in on values for [HF], [F–], [H3O+], and [OH–]. Fig-
ure 6.18a shows a spreadsheet for this purpose. The cells in the first row 
contain  initial guesses for the equilibrium pH. Using the ladder diagram 
in Figure 6.14, pH values between 1 and 3 seems reasonable. You can add 
additional columns if you wish to include more pH values. The formulas 
in rows 2–5 use the definition of pH to calculate [H3O+], Kw to calculate 
[OH–], the charge balance equation to calculate [F–], and Ka to calculate 
[HF]. To evaluate the initial guesses, we use the mass balance expression 
for HF, rewriting it as

.C 1 0 0[HF] [F ] [HF] [F ]HF+ - = + - =- -

and entering it in the last row; the values in these cells gives the calculation’s 
error for each pH.
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Figure 6.18b shows the actual values for the spreadsheet in Figure 6.18a.
The negative value in cells B6 and C6 means that the combined concentra-
tions of HF and F– are too small, and the positive value in cell D6 means 
that their combined concentrations are too large. The actual pH, therefore, 
is between 1.00 and 2.00. Using these pH values as new limits for the 
spreadsheet’s first row, we continue to narrow the range for the actual pH. 
Figure 6.18c shows a final set of guesses, with the actual pH falling between 
1.59 and 1.58. Because the error for 1.59 is smaller than that for 1.58, we 
accept a pH of 1.59 as the answer. Note that this is an agreement with our 
earlier result.

You also can solve this set of simultaneous 
equations using Excel’s Solver function. 
To do so, create the spreadsheet in Figure 
6.18a, but omit all columns other than 
A and B. Select Solver... from the Tools 
menu and define the problem by using 
B6 for Set Target Cell, setting its desired 
value to 0, and selecting B1 for By Chang-
ing Cells:. You may need to play with the 
Solver’s options to find a suitable solution 
to the problem, and it is wise to try several 
different initial guesses. 
The Solver function works well for rela-
tively simple problems, such as finding 
the pH of 1.0 M HF. As problems be-
come more complex and include more 
unknowns, the Solver function becomes 
a less reliable tool for solving equilibrium 
problems.

Practice Exercise 6.14
Using Excel, calculate the solubility of AgI in 0.10 M NH3 without mak-
ing any assumptions. See our earlier treatment of this problem for the 
relevant equilibrium reactions and constants.
Click here to review your answer to this exercise.

6J.2 R

R has a simple command—uniroot—for finding the chemically significant 
root of a polynomial equation. In addition, it is easy to write a function 
to solve a set of simultaneous equations by iterating in on a solution. Let’s 
work through two examples.

EXAMPLE 1: SOLUBILITY OF PB(IO3)2 IN 0.10 M PB(NO3)2

In our earlier treatment of this problem we arrived at the following cubic 
equation

. .x x4 0 40 2 5 103 2 13#+ = -

where x is the equilibrium concentration of Pb2+. Although there are sev-
eral approaches for solving cubic equations with paper and pencil, none are 
computationally easy. One approach to solving the problem is to iterate in 
on the answer by finding two values of x, one that leads to a result larger 
than 2.5×10–13 and one that gives a result smaller than 2.5×10–13. Having 
established boundaries for the value of x, we then shift the upper limit and 
the lower limit until the precision of our answer is satisfactory. Without 
going into details, this is how the uniroot command works.

The general form of the uniroot command is

uniroot(function, lower, upper, tol)

where function is an object that contains the equation whose root we seek, 
lower and upper are boundaries for the root, and tol is the desired precision 
for the root. To create an object that contains the equation, we rewrite it so 
that its right-side equals zero.

. .x x4 0 40 2 5 103 2 13#+ - -
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Next, we enter the following code, which defines our cubic equation as a 
function with the name eqn.  

> eqn = function(x) {4*x^3 + 0.4*x^2 – 2.5e–13}
Because our equation is a function, the uniroot command can send a value 
of x to eqn and receive back the equation’s corresponding value. Finally, we 
use the uniroot command to find the root. 

> uniroot(eqn, lower = 0, upper = 0.1, tol = 1e–18)
Because Pb(IO3)2 is not very soluble, we expect that x is small and set the 
lower limit to 0. The choice for the upper limit is less critical. To ensure 
that the solution has sufficient precision, we set the tolerance to a value that 
is smaller than the expected root. Figure 6.19 shows the resulting output. 
The value $root is the equation’s root, which is in good agreement with our 
earlier result of 7.91×10–7 for the molar solubility of Pb(IO3)2. The other 
results are the equation’s value for the root, the number of iterations needed 
to find the root, and the root’s estimated precision.

EXAMPLE 2: PH OF 1.0 M HF

In developing our earlier solution to this problem we began by identifying 
four unknowns and writing out the following four equations.

.K 6 8 10[HF]
[H O ][F ] 4

a
3 #= =

+ -
-

.K 1 00 10[H O ][OH ] 14
w 3 #= =+ - -

C [HF] [F ]HF= + -

[H O ] [OH ] [F ]3 = ++ - -

Next, we made two assumptions that allowed us to simplify the problem to 
an equation that is easy to solve. 

[ ] ( . ) ( . ) .K C 6 8 10 1 0 2 6 10H O 4 2
3 a HF # #= = =+ - -

Although we did not note this at the time, without making assumptions 
the solution to our problem is a cubic equation

Figure 6.19 The summary of R’s output from the 
uniroot command. See the text for a discussion of 
how to interpret the results.

For example, entering
 > eqn(2)
passes the value x = 2 to the function and 
returns an answer of 33.6.

$root
[1] 7.905663e-07

$f.root
[1] 0

$iter
[1] 46

$estim.prec
[1] 1.827271e-12
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[ ] [ ]
( ) [ ]

K
K C K K K 0

H O H O
H O

3 2
3 a 3

a HF w 3 a w

+ -

+ - =

+ +

+

that we can solve using the uniroot command. Of course, this assumes that 
we successfully complete the derivation!

Another option is to write a function to solve the four equations simul-
taneously. Here is the code for this function, which we will call eval.

> eval = function(pH){
+ h3o =10^–pH
+ oh = 1e–14/h3o
+ hf = (h3o*f )/6.8e–4
+ error = hf + f – 1
+ output = data.frame(pH, error)
+ print(output)
+ }

Let’s examine more closely how this function works. The function accepts 
a guess for the pH and uses the definition of pH to calculate [H3O+], Kw 
to calculate [OH–], the charge balance equation to calculate [F–], and Ka 
to calculate [HF]. The function then evaluates the solution using the mass 
balance expression for HF, rewriting it as

.C 1 0 0[HF] [F ] [HF] [F ]HF+ - = + - =- -

The function then gathers together the initial guess for the pH and the error 
and prints them as a table.

The beauty of this function is that the object we pass to it, pH, can 
contain many values, which makes it easy to search for a solution. Because 
HF is an acid, we know that the solution is acidic. This sets an upper limit 
of 7 for the pH. We also know that the pH of 1.0 M HF is no smaller than 
1 as this is the pH if HF was a strong acid. For our first pass, let’s enter the 
following code

> pH = c(7, 6, 5, 4, 3, 2, 1)
> eval(pH)

which varies the pH within these limits. The result, which is shown in Fig-
ure 6.20a, indicates that the pH is less than 2 and greater than 1 because it 
is in this interval that the error changes sign.

For our second pass, let’s explore pH values between 2.0 and 1.0 to 
further narrow down the problem’s solution. 

> pH = c(2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0)
> eval(pH)

The result in Figure 6.20b show that the pH must be less than 1.6 and 
greater than 1.5. A third pass between these limits gives the result shown 
in Figure 6.20c, which is consistent with our earlier result of a pH 1.59.

The open { tells R that we intend to enter 
our function over several lines. When we 
press enter at the end of a line, R changes 
its prompt from > to +, indicating that 
we are continuing to enter the same com-
mand. The close } on the last line indicates 
that we have completed the function.
The command data.frame combines two 
or more objects into a table.
You can adapt this function to other prob-
lems by changing the variable you pass to 
the function and the equations you in-
clude within the function.

A simpler, more compact way to do this is
   > pH = seq(1,7,1)
   > eval(pH)
or
   > eval(seq(1,7,1))
where the sequence command has a for-
mat of

seq(lower limit, upper limit, step size)
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6K Some Final Thoughts on Equilibrium Calculations
In this chapter we developed several tools to evaluate the composition of a 
system at equilibrium. These tools differ in how precisely they allow us to 
answer questions involving equilibrium chemistry. They also differ in how 
easy they are to use. An important part of having several tools to choose 
from is knowing when to each is most useful. If you need to know whether 
a reaction if favorable or you need to estimate a solution’s pH, then a ladder 
diagram usually will meet your needs. On the other hand, if you require a 
more accurate or more precise estimate of a compound’s solubility, then a 
rigorous calculation that includes activity coefficients is necessary.

A critical part of solving an equilibrium problem is to know what equi-
librium reactions to include. The need to include all relevant reactions is 
obvious, and at first glance this does not appear to be a significant prob-
lem—it is, however, a potential source of significant errors. The tables of 
equilibrium constants in this textbook, although extensive, are a small sub-
set of all known equilibrium constants, which makes it easy to overlook an 
important equilibrium reaction. Commercial and freeware computational 
programs with extensive databases are available for equilibrium modeling, 
two examples of which are Visual Minteq (Windows only) and CurTiPot 
(for Excel); Visual Minteq can model acid–base, solubility, complexation, 

Figure 6.20 The output of three iterations to find the pH for a solution of 1.0 M HF. The results are for pH 
values between (a) 7 and 0, (b) 2.0 and 1.0, and (c) 1.60 M and 1.50. The columns labeled “error” show an 
evaluation of the mass balance equation for HF, with positive values indicating that the pH is too low and 
negative values indicating that the pH is too high.

(a) (b) (c)  pH        error
1  7   -1.0000000
2  6   -0.9999990
3  5   -0.9999899
4  4   -0.9998853
5  3   -0.9975294
6  2   -0.8429412
7  1   13.8058824
8  0 1470.5882353

    pH       error
1  2.0 -0.84294118
2  1.9 -0.75433822
3  1.8 -0.61475600
4  1.7 -0.39459566
5  1.6 -0.04700269
6  1.5  0.50221101
7  1.4  1.37053600
8  1.3  2.74406936
9  1.2  4.91761295
10 1.1  8.35821730
11 1.0 13.80588235

     pH        error
1  1.60 -0.047002688
2  1.59 -0.002688030
3  1.58  0.043701167
4  1.57  0.092262348
5  1.56  0.143097544
6  1.55  0.196313586
7  1.54  0.252022331
8  1.53  0.310340901
9  1.52  0.371391928
10 1.51  0.435303816
11 1.50  0.502211012

Practice Exercise 6.15
Using R, calculate the solubility of AgI in 0.10 M NH3 without mak-
ing any assumptions. See our earlier treatment of this problem for the 
relevant equilibrium reactions and constants
Click here to review your answer to this exercise.
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and redox equilibria; CurTiPot is limited to acid–base equilibria. Both pro-
grams account for the effect of activity.

Finally, a consideration of equilibrium chemistry can only help us de-
cide if a reaction is favorable; however, it does not guarantee that the reac-
tion occurs. How fast a reaction approaches its equilibrium position does 
not depend on the reaction’s equilibrium constant because the rate of a 
chemical reaction is a kinetic, not a thermodynamic, phenomenon. We 
will consider kinetic effects and their application in analytical chemistry in 
Chapter 13.

6L Key Terms
acid acid dissociation constant activity
activity coefficient amphiprotic base
base dissociation constant buffer buffer capacity
charge balance equation common ion effect cumulative formation 

constant
dissociation constant enthalpy entropy
equilibrium equilibrium constant extended Debye-Hückel 

equation
formation constant Gibb’s free energy half-reaction
Henderson–Hasselbalch 
equation

ionic strength ladder diagram

Le Châtelier’s principle ligand mass balance equation
metal–ligand complex method of successive 

approximations
monoprotic

Nernst equation oxidation oxidizing agent
pH scale polyprotic potential
precipitate redox reaction reducing agent
reduction standard-state standard potential
steady state stepwise formation 

constant
solubility product

6M Chapter Summary
Analytical chemistry is more than a collection of techniques; it is the ap-
plication of chemistry to the analysis of samples. As we will see in later 
chapters, almost all analytical methods use chemical reactivity to accom-
plish one or more of the following: dissolve a sample, separate analytes 
from interferents, transform an analyte into a more useful form, or provide 
a signal. Equilibrium chemistry and thermodynamics provide us with a 
means for predicting which reactions are likely to be favorable.

The most important types of reactions are precipitation reactions, acid–
base reactions, metal-ligand complexation reactions, and oxidation–re-
duction reactions. In a precipitation reaction two or more soluble species 
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combine to produce an insoluble precipitate, which we characterize using 
a solubility product.

An acid–base reaction occurs when an acid donates a proton to a base. 
The reaction’s equilibrium position is described using either an acid dis-
sociation constant, Ka, or a base dissociation constant, Kb. The product of 
Ka and Kb for an acid and its conjugate base is the dissociation constant for 
water, Kw.

When a ligand donates one or more pairs of electron to a metal ion, 
the result is a metal–ligand complex. Two types of equilibrium constants 
are used to describe metal–ligand complexation: stepwise formation con-
stants and overall formation constants. There are two stepwise formation 
constants for the metal–ligand complex ML2, each of which describes the 
addition of one ligand; thus, K1 represents the addition of the first ligand 
to M, and K2 represents the addition of the second ligand to ML. Alterna-
tively, we can use a cumulative, or overall formation constant, b2, for the 
metal–ligand complex ML2, in which both ligands are added to M.

In an oxidation–reduction reaction, one of the reactants is oxidized and 
another reactant is reduced. Instead of using an equilibrium constants to 
characterize an oxidation–reduction reactions, we use the potential, posi-
tive values of which indicate a favorable reaction. The Nernst equation 
relates this potential to the concentrations of reactants and products.

Le Châtelier’s principle provides a means for predicting how a system 
at equilibrium responds to a change in conditions. If we apply a stress to 
a system at equilibrium—by adding a reactant or product, by adding a 
reagent that reacts with a reactant or product, or by changing the volume—
the system will respond by moving in the direction that relieves the stress.

You should be able to describe a system at equilibrium both qualitative-
ly and quantitatively. You can develop a rigorous solution to an equilibrium 
problem by combining equilibrium constant expressions with appropriate 
mass balance and charge balance equations. Using this systematic approach, 
you can solve some quite complicated equilibrium problems. If a less rigor-
ous answer is acceptable, then a ladder diagram may help you estimate the 
equilibrium system’s composition.

Solutions that contain relatively similar amounts of a weak acid and its 
conjugate base experience only a small change in pH upon the addition 
of a small amount of strong acid or of strong base. We call these solutions 
buffers. A buffer can also be formed using a metal and its metal–ligand 
complex, or an oxidizing agent and its conjugate reducing agent. Both the 
systematic approach to solving equilibrium problems and ladder diagrams 
are useful tools for characterizing buffers.

A quantitative solution to an equilibrium problem may give an answer 
that does not agree with experimental results if we do not consider the ef-
fect of ionic strength. The true, thermodynamic equilibrium constant is a 
function of activities, a, not concentrations. A species’ activity is related to 
its molar concentration by an activity coefficient, c. Activity coefficients 
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are estimated using the extended Debye-Hückel equation, making possible 
a more rigorous treatment of equilibria.

6N Problems

1. Write equilibrium constant expressions for the following reactions. 
What is the value for each reaction’s equilibrium constant?

a.  ( ) ( ) ( )aq aq aqNH H O NH3 3 4?+ + +

b.  ( ) ( ) ( ) ( )s aq s aqPbI S PbS 2I2
2 ?+ +- -

c ( ) ( ) ( ) ( )aq aq aq aqCd 4CN Cd(CN)Y Y2
4
2 4?+ +- - - -

d. ( ) ( ) ( ) ( )s aq aq aqAgCl 2NH Ag(NH ) Cl3 3 2?+ ++ -

e. ( ) ( ) ( ) ( ) ( )s aq aq aq l2 2BaCO H O Ba H CO H O3 3
2

2 3 2?+ + ++ +

2. Use a ladder diagram to explain why the first reaction is favorable and 
why the second reaction is unfavorable.

( ) ( ) ( ) ( )aq aq aq aqH PO F HF H PO3 4 2 4?+ +- -

( ) ( ) ( ) ( )aq aq aq aq2 2H PO F HF HPO2
3 4 4?+ +- -

 Determine the equilibrium constant for these reactions and verify that 
they are consistent with your ladder diagram.

3. Calculate the potential for the following redox reaction for a solution 
in which [Fe3+] = 0.050 M, [Fe2+] = 0.030 M, [Sn2+] = 0.015 M and 
[Sn4+] = 0.020 M.

( ) ( ) ( ) ( )aq aq aq aq2Fe Sn Sn 2Fe3 2 4 2?+ ++ + + +

4. Calculate the standard state potential and the equilibrium constant for 
each of the following redox reactions. Assume that [H3O+] is 1.0 M for 
an acidic solution and that [OH–] is 1.0 M for a basic solution. Note 
that these reactions are not balanced. Reactions (a) and (b) are in acidic 
solution; reaction (c) is in a basic solution.

a. ( ) ( ) ( ) ( )aq aq aq aqMnO H SO Mn SO4 2 3
2

4
2?+ +- + -

b.  ( ) ( ) ( )aq aq aqIO I I3 2?+- -

c. ( ) ( ) ( ) ( )aq aq aq aqClO I IO Cl3?+ +- - - -

5. One analytical method for determining the concentration of sulfur is 
to oxidize it to SO4

2-  and then precipitate it as BaSO4 by adding BaCl2. 
The mass of the resulting precipitate is proportional to the amount of 
sulfur in the original sample. The accuracy of this method depends on 
the solubility of BaSO4, the reaction for which is shown here.

( ) ( ) ( )s aq aqBaSO Ba SO4
2

4
2? ++ -

Most of the problems that follow require one or 
more equilibrium constants or standard state po-
tentials. For your convenience, here are hyperlinks 
to the appendices containing these constants 
Appendix 10: Solubility Products
Appendix 11: Acid Dissociation Constants
Appendix 12: Metal-Ligand Formation Constants
Appendix 13: Standard State Reduction Potentials

Most of the problems that follow require one or 
more equilibrium constants or standard state po-
tentials. For your convenience, here are hyperlinks 
to the appendices containing these constants 
Appendix 10: Solubility Products
Appendix 11: Acid Dissociation Constants
Appendix 12: Metal-Ligand Formation Constants
Appendix 13: Standard State Reduction Potentials

Y is the shorthand symbol for EDTA.
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 For each of the following, predict the affect on the solubility of BaSO4: 
(a) decreasing the solution’s pH; (b) adding more BaCl2; and (c) in-
creasing the solution’s volume by adding H2O.

6. Write a charge balance equation and one or more mass balance equa-
tions for the following solutions.

 a. 0.10 M NaCl
 b. 0.10 M HCl
 c. 0.10 M HF
 d. 0.10 M NaH2PO4
 e. MgCO3 (saturated solution)
 f. 0.10 M Ag(CN) 2

-  (prepared using AgNO3 and KCN)
 g. 0.10 M HCl and 0.050 M NaNO2

7. Use the systematic approach to equilibrium problems to calculate the 
pH of the following solutions. Be sure to state and justify any assump-
tions you make in solving the problems.

 a.  0.050 M HClO4
 b. 1.00 × 10–7 M HCl
 c. 0.025 M HClO
 d. 0.010 M HCOOH
 e. 0.050 M Ba(OH)2
 f.  0.010 M C5H5N

8. Construct ladder diagrams for the following diprotic weak acids (H2A) 
and estimate the pH of 0.10 M solutions of H2A, NaHA, and Na2A. 

 a. maleic acid
 b. malonic acid
 c. succinic acid

9. Use the systematic approach to solving equilibrium problems to calcu-
late the pH of (a) malonic acid, H2A; (b) sodium hydrogenmalonate, 
NaHA; and (c) sodium malonate, Na2A. Be sure to state and justify any 
assumptions you make in solving the problems.

10. Ignoring activity effects, calculate the molar solubility of Hg2Br2 in the 
following solutions. Be sure to state and justify any assumption you 
make in solving the problems.

 a. a saturated solution of Hg2Br2
 b. 0.025 M Hg2(NO3)2 saturated with Hg2Br2
 c. 0.050 M NaBr saturated with Hg2Br2

11. The solubility of CaF2 is controlled by the following two reactions

 ( ) ( ) ( )s aq aqCaF Ca 2F2
2? ++ -

Most of the problems that follow require one or 
more equilibrium constants or standard state po-
tentials. For your convenience, here are hyperlinks 
to the appendices containing these constants 
Appendix 10: Solubility Products
Appendix 11: Acid Dissociation Constants
Appendix 12: Metal-Ligand Formation Constants
Appendix 13: Standard State Reduction Potentials

Most of the problems that follow require one or 
more equilibrium constants or standard state po-
tentials. For your convenience, here are hyperlinks 
to the appendices containing these constants 
Appendix 10: Solubility Products
Appendix 11: Acid Dissociation Constants
Appendix 12: Metal-Ligand Formation Constants
Appendix 13: Standard State Reduction Potentials
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( ) ( ) ( ) ( )aq l aq aqHF H O H O F2 3?+ ++ -

 Calculate the molar solubility of CaF2 in a solution that is buffered to 
a pH of 7.00. Use a ladder diagram to help simplify the calculations. 
How would your approach to this problem change if the pH is buffered 
to 2.00? What is the solubility of CaF2 at this pH? Be sure to state and 
justify any assumptions you make in solving the problems.

12. Calculate the molar solubility of Mg(OH)2 in a solution buffered to 
a pH of 7.00. How does this compare to its solubility in unbuffered 
deionized water with an initial pH of 7.00? Be sure to state and justify 
any assumptions you make in solving the problem.

13. Calculate the solubility of Ag3PO4 in a solution buffered to a pH of 
9.00. Be sure to state and justify any assumptions you make in solving 
the problem. 

14. Determine the equilibrium composition of saturated solution of AgCl. 
Assume that the solubility of AgCl is influenced by the following reac-
tions.  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

s aq aq

aq aq aq

aq aq aq

AgCl Ag Cl
Ag Cl AgCl

AgCl Cl AgCl2

?

?

?

+

+

+

+ -

+ -

- -

 Be sure to state and justify any assumptions you make in solving the 
problem.

15. Calculate the ionic strength of the following solutions

 a. 0.050 M NaCl
 b. 0.025 M CuCl2
 c. 0.10 M Na2SO4

16. Repeat the calculations in Problem 10, this time correcting for the ef-
fect of ionic strength. Be sure to state and justify any assumptions you 
make in solving the problems.

17. Over what pH range do you expect Ca3(PO4)2 to have its minimum 
solubility?

18. Construct ladder diagrams for the following systems, each of which 
consists of two or three equilibrium reactions. Using your ladder dia-
grams, identify all reactions that are likely to occur in each system?

 a. HF and H3PO4 
 b. Ag(CN) 2

- , Ni(CN) 4
2- , and Fe(CN) 6

3-

 c. Cr O7
2

2
- /Cr3+ and Fe3+/Fe2+

19. Calculate the pH of the following acid–base buffers. Be sure to state 
and justify any assumptions you make in solving the problems.

Most of the problems that follow require one or 
more equilibrium constants or standard state po-
tentials. For your convenience, here are hyperlinks 
to the appendices containing these constants 
Appendix 10: Solubility Products
Appendix 11: Acid Dissociation Constants
Appendix 12: Metal-Ligand Formation Constants
Appendix 13: Standard State Reduction Potentials

Most of the problems that follow require one or 
more equilibrium constants or standard state po-
tentials. For your convenience, here are hyperlinks 
to the appendices containing these constants 
Appendix 10: Solubility Products
Appendix 11: Acid Dissociation Constants
Appendix 12: Metal-Ligand Formation Constants
Appendix 13: Standard State Reduction Potentials
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 a. 100.0 mL of 0.025 M formic acid and 0.015 M sodium formate
 b. 50.00 mL of 0.12 M NH3 and 3.50 mL of 1.0 M HCl
 c. 5.00 g of Na2CO3 and 5.00 g of NaHCO3 diluted to 0.100 L

20. Calculate the pH of the buffers in Problem 19 after adding 5.0 mL of 
0.10 M HCl. Be sure to state and justify any assumptions you make in 
solving the problems.

21. Calculate the pH of the buffers in Problem 19 after adding 5.0 mL of 
0.10 M NaOH. Be sure to state and justify any assumptions you make 
in solving the problems.

22. Consider the following hypothetical complexation reaction between a 
metal, M, and a ligand, L

( ) ( ) ( )aq aq aqM L ML?+

 for which the formation constant is 1.5 × 108. (a) Derive an equation 
similar to the Henderson–Hasselbalch equation that relates pM to the 
concentrations of L and ML. (b) What is the pM for a solution that 
contains 0.010 mol of M and 0.020 mol of L? (c) What is pM if you 
add 0.002 mol of M to this solution? Be sure to state and justify any 
assumptions you make in solving the problem.

23. A redox buffer contains an oxidizing agent and its conjugate reducing 
agent. Calculate the potential of a solution that contains 0.010 mol of 
Fe3+ and 0.015 mol of Fe2+. What is the potential if you add sufficient 
oxidizing agent to convert 0.002 mol of Fe2+ to Fe3+? Be sure to state 
and justify any assumptions you make in solving the problem.

24. Use either Excel or R to solve the following problems. For these prob-
lems, make no simplifying assumptions.
a. the solubility of CaF2 in deionized water

b. the solubility of AgCl in deionized water

c.  the pH of 0.10 M fumaric acid

25. Derive equation 6.64 for the rigorous solution to the pH of 0.1 M HF.

6O Solutions to Practice Exercises
Practice Exercise 6.1
The overall reaction is equivalent to

Rxn 4 2 Rxn 1#-
Subtracting a reaction is equivalent to adding the reverse reaction; thus, 
the overall equilibrium constant is

Most of the problems that follow require one or 
more equilibrium constants or standard state po-
tentials. For your convenience, here are hyperlinks 
to the appendices containing these constants 
Appendix 10: Solubility Products
Appendix 11: Acid Dissociation Constants
Appendix 12: Metal-Ligand Formation Constants
Appendix 13: Standard State Reduction Potentials

Most of the problems that follow require one or 
more equilibrium constants or standard state po-
tentials. For your convenience, here are hyperlinks 
to the appendices containing these constants 
Appendix 10: Solubility Products
Appendix 11: Acid Dissociation Constants
Appendix 12: Metal-Ligand Formation Constants
Appendix 13: Standard State Reduction Potentials
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( ) ( . )
( . ) .K K

K
0 40
5 0 31 25 31

1
2

4
2 .= = =

Click here to return to the chapter.

Practice Exercise 6.2
The Kb for hydrogen oxalate is

.
. .K K

K
5 60 10
1 00 10 1 79 102

14
13

b,HC O
a,H C O

w
2 4

2 2 4 #
# #= = =-

-
-

-

and the Kb for oxalate is

.
. .K K

K
5 42 10
1 00 10 1 85 105

14
10

b,C O
a,HC O

w
2

4
2 4

2 #
# #= = =-

-
-

-

-

As we expect, the Kb value for C O4
2

2
-  is larger than that for HC O42

- . 

Click here to return to the chapter.

Practice Exercise 6.3
We can write the reaction as a sum of three other reactions. The first reac-
tion is the solubility of AgCl(s), which we characterize by its Ksp.

( ) ( ) ( )s aq aqAgBr Ag Br? ++ -

The remaining two reactions are the stepwise formation of Ag(S O )2 3 2
3- , 

which we characterize by K1 and K2.
( ) ( ) ( )aq aq aqAg S O Ag(S O )2 3

2
2 3?++ - -

)( ) ( ) ( )aq aq aqAg(S O ) S O Ag(S O 2
3

2 3 2 3
2

2 3?+- - -

Using values for Ksp, K1, and K2 from Appendix 10 and Appendix 11, we 
find that the equilibrium constant for our reaction is

( . ) ( . ) ( . )K K K K 5 0 10 6 6 10 7 1 10 23sp 1 2
13 8 4# # # # #= = =-

Click here to return to the chapter.

Practice Exercise 6.4
The two half-reactions are the oxidation of Fe2+ and the reduction of 
MnO4

- .

( ) ( ) eaq aqFe Fe2 3? ++ + -

( ) ( ) ( ) ( )eaq aq aq lMnO 8H 5 Mn 4H O4
2

2?+ + +- + - +

From Appendix 13, the standard state reduction potentials for these half-
reactions are

. .E E0 771 1 51V and VFe /Fe
o

MnO /Mn
o

3 2
4

2= =+ + - +

(a)  The standard state potential for the reaction is

. . .E E E 1 51 0 771 0 74V V Vo
MnO /Mn
o

Fe /Fe
o

4
2 3 2= - = - =- + + +
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(b) To calculate the equilibrium constant we substitute appropriate values 
into equation 6.25.

. . logE K0 74 5
0 05916Vo= =

Solving for K gives its value as 3.5×1062.       
(c) To calculate the potential under these non-standard state conditions, 

we make appropriate substitutions into the Nernst equation.

lnE E nF
RT

[MnO ][Fe ] [H ]
[Mn ][Fe ]o

4
2 5 8

2 3 5

= - - + +

+ +

. .
( . ) ( . ) ( )

( . ) ( . ) .logE 0 74 5
0 05916

0 025 0 50 1 10
0 015 0 10 0 12 V75 8

5

#
= - =-

Click here to return to the chapter.

Practice Exercise 6.5
From Appendix 11, the pKa values for H2CO3 are 6.352 and 10.329. The 
ladder diagram for H2CO3 is shown in Figure 6.21. The predominate 
form at a pH of 7.00 is HCO3

- .

Click here to return to the chapter.

Practice Exercise 6.6
The ladder diagram in Figure 6.5 indicates that the reaction between ace-
tic acid and p-nitrophenolate is favorable. Because p-nitrophenolate is in 
excess, we assume the reaction of acetic acid to acetate is complete. At 
equilibrium essentially no acetic acid remains and there are 0.040 moles 
of acetate. Converting acetic acid to acetate consumes 0.040 moles of 
p-nitrophenolate; thus

moles p-nitrophenolate = 0.090 – 0.040 = 0.050 mol

moles p-nitrophenol = 0.040 mol

According to the ladder diagram for this system, the pH is 7.15 when 
there are equal concentrations of p-nitrophenol and p-nitrophenolate. Be-
cause we have slightly more p-nitrophenolate than we have p-nitrophenol, 
the pH is slightly greater than 7.15.

Click here to return to the chapter.

Practice Exercise 6.7
When Hg2Cl2 dissolves, two Cl– are produced for each ion of Hg22+ . If 
we assume x is the change in the molar concentration of Hg22+ , then the 
change in the molar concentration of Cl– is 2x. The following table helps 
us keep track of our solution to this problem.

pH

pKa1 = 6.352

pKa2 = 10.329

CO3
2–

HCO3

H2CO3

–

Figure 6.21 Ladder diagram for 
Practice Exercise 6.5
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Concentrations Hg2Cl2 (s) ? Hg2
2+  (aq) + 2Cl– (aq)

Initial solid 0 0
Change solid +x +2x

Equilibrium solid x 2x

Substituting the equilibrium concentrations into the Ksp expression for 
Hg2Cl2 gives

( ) ( ) .K x x x2 4 1 2 10[Hg ][Cl ] 2 2 3 18
sp 2

2 #= = = =+ - -

.x 6 69 10 7#= -

Substituting x back into the equilibrium expressions for Hg2
2+  and Cl– 

gives their concentrations as
[ ] . [ ] .x x6 7 10 2 1 3 10Hg M Cl M7 6

2
2 # #= = = =+ - - -

The molar solubility is equal to [ Hg2
2+ ], or 6.7 × 10–7 mol/L.

Click here to return to the chapter.

Practice Exercise 6.8
We begin by setting up a table to help us keep track of the concentrations 
of Hg22+  and Cl– as this system moves toward and reaches equilibrium.

Concentrations Hg2Cl2 (s) ? Hg2
2+  (aq) + 2Cl– (aq)

Initial solid 0 0.10
Change solid +x +2x

Equilibrium solid x 0.10 + 2x

Substituting the equilibrium concentrations into the Ksp expression for 
Hg2Cl2 leaves us with a difficult to solve cubic equation.

( ) ( . ) . .K x x x x x0 10 2 4 0 40 0 010[Hg ][Cl ] 2 3 2
sp 2

2 2= = + = + ++ -

Let’s make an assumption to simplify this problem. Because we expect the 
value of x to be small, let’s assume that

. .x0 10 2 0 10[Cl ] .= +-

This simplifies our problem to
( ) ( . ) . .K x x0 10 0 010 1 2 10[Hg ][Cl ] 2 18

sp 2
2 2 #= = = =+ - -

which gives the value of x as 1.2×10-16 M. The difference between the 
actual concentration of Cl–, which is (0.10 + 2x) M, and our assumption 
that it is 0.10 M introduces an error of 2.4×10–13 %. This is a negligible 
error. The molar solubility of Hg2Cl2 is the same as the concentration of 
Hg2

2+ , or 1.2×10–16 M. As expected, the molar solubility in 0.10 M NaCl 
is less than 6.7×10–7 mol/L, which is its solubility in water (see solution 
to Practice Exercise 6.7). 

Click here to return to the chapter.
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Practice Exercise 6.9
To help us determine what ions are in solution, let’s write down all the 
reaction needed to prepare the solutions and the equilibrium reactions 
that take place within these solutions. These reactions are the dissolution 
of two soluble salts

( ) ( ) ( )s aq aqKH PO K H PO2 4 2 4$ ++ -

( ) ( ) ( )s aq aqNaHPO Na HPO2
4 4$ ++ -

and the acid–base dissociation reactions for H PO42
- , HPO4

2- , and H2O.
( ) ( ) ( ) ( )aq l aq aqH PO H O H O HPO2 4 2 3 4

2?+ +- + -

( ) ( ) ( ) ( )aq l aq aqH PO H O OH H PO3 42 4 2 ?+ +- -

( ) ( ) ( ) ( )aq l aq aqHPO H O H O PO3
4
2

2 3 4?+ +- + -

( ) ( ) ( )l aq aq2H O H O OH2 3? ++ -

Note that we did not include the base dissociation reaction for HPO4
2-

because we already accounted for its product, H PO42
- , in another reac-

tion. The mass balance equations for K+ and Na+ are straightforward
. .0 10 0 10[K ] M and [Na ] M= =+ +

but the mass balance equation for phosphate takes a bit more thought. 
Both H PO42

-  and HPO4
2-  produce the same ions in solution. We can, 

therefore, imagine that the solution initially contains 0.15 M KH2PO4, 
which gives the following mass balance equation.

.0 15[H PO ] [H PO ] [HPO ] [PO ] M3 4 2 4 4
2

4
3+ + + =- - -

The charge balance equation is
[H O ] [K ] [Na ]

[H PO ] 2 [HPO ] 3 [PO ] [OH ]
3

2 4 4
2

4
3# #

+ + =

+ + +

+ + +

- - - -

Click here to return to the chapter.

Practice Exercise 6.10
To determine the pH of 0.050 M NH3, we need to consider two equilib-
rium reactions: the base dissociation reaction for NH3

( ) ( ) ( ) ( )aq l aq aqNH H O OH NH3 2 4?+ +- +

and water’s dissociation reaction.
( ) ( ) ( )l aq aq2H O H O OH2 3? ++ -

These two reactions contain four species whose concentrations we need to 
consider: NH3, NH4

+ , H3O+, and OH–. We need four equations to solve 
the problem—these equations are the Kb equation for NH3

.K 1 75 10[NH ]
[NH ][OH ] 5

b
3

4 #= =
+ -

-

the Kw equation for H2O
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[ ] [ ]K H O OHw 3= + -

a mass balance equation on ammonia
.C 0 050 M [NH ] [NH ]NH 3 43 = = + +

and a charge balance equation
[H O ] [NH ] [OH ]3 4+ =+ + -

To solve this problem, we will make two assumptions. Because NH3 is a 
base, our first assumption is

[OH ] >> [H O ]3
- +

which simplifies the charge balance equation to
[NH ] [OH ]4 =+ -

Because NH3 is a weak base, our second assumption is
[NH ] >> [NH ]3 4

+

which simplifies the mass balance equation to
.C 0 050 M [NH ]NH 33 = =

Substituting the simplified charge balance equation and mass balance 
equation into the Kb equation leave us with

[ ]
[ ] [ ] .K C C 1 75 10NH
NH OH [OH ][OH ] [OH ] 2

5
b

3

4

NH NH3 3

#= = = =
+ - - - -

-

( . ) ( . ) .K C 1 75 10 0 050 9 35 10[OH ] 5 4
b NH3 # #= = =- - -

Before we accept this answer, we must verify our two assumptions. The 
first assumption is that the concentration of OH– is significantly greater 
than the concentration of H3O+. Using Kw, we find that

.
. .K

9 35 10
1 00 10 1 07 10[H O ] [OH ] 4

14
11

3
w

#
# #= = =+

- -

-
-

Clearly this assumption is acceptable. Our second assumption is that the 
concentration of NH3 is significantly greater than the concentration of 
NH4

+ . Using our simplified charge balance equation, we find that
.9 35 10[NH ] [OH ] 4

4 #= =+ - -

Because the concentration of NH4
+  is 1.9% of CNH3, our second as-

sumption also is reasonable. Given that [H3O+] is 1.07 × 10–11, the pH 
is 10.97.

Click here to return to the chapter.

Practice Exercise 6.11
In solving for the pH of 0.10 M alanine, we made the following three 
assumptions: (a) [HL] >> [H2L+] + [L–]; (b) Ka1Kw << Ka1Ka2CHL;  and 
(c) Ka1 << CHL. Assumptions (b) and (c) are easy to check. The value of 
Ka1 (4.487 × 10–3) is 4.5% of CHL (0.10), and Ka1Kw (4.487 × 10–17) is 



266 Analytical Chemistry 2.1

0.074% of Ka1Ka2 CHL (6.093 × 10–14). Each of these assumptions intro-
duces an error of less than ±5%.
To test assumption (a) we need to calculate the concentrations of H2L+ 
and L–, which we accomplish using the equations for Ka1 and Ka2.

.
( . ) ( . ) .K 4 487 10
7 807 10 0 10 1 74 10[H L ] [H O ][HL]

3

7
5

2
a1

3

#
#

#= = =+
+

-

-
-

.
( . ) ( . ) .K

7 807 10
1 358 10 0 10 1 74 10[L ] [H O ]

[HL]2
7

10
5

3

a

#
#

#= = =-
+ -

-
-

Because these concentrations are less than ±5% of CHL, the first assump-
tion also is acceptable.

Click here to return to the chapter.

Practice Exercise 6.12
The acid dissociation constant for H PO42

-  is 6.32 × 10–8, or a pKa of 
7.199. Substituting the initial concentrations of H PO42

-  and HPO4
2- into 

equation 6.60 and solving gives the buffer’s pH as

. . .
. . .log log7 199 7 199 0 10

0 050 6 898 6 90pH [H PO ]
[HPO ]

2 4

4
2

.= + = + =-

-

Adding HCl converts a portion of HPO4
2-  to H PO42

-  as a result of the 
following reaction

( ) ( ) ( ) ( )aq aq l aqHPO H O H O H PO4
2

3 2 2 4?+ +- + -

Because this reaction’s equilibrium constant is so large (it is 1.59 × 107), 
we may treat the reaction as if it goes to completion. The new concentra-
tions of H PO42

- and HPO4
2-  are

C V
mol H PO mol HCl

0.10 L 5.0 10 L
(0.10 M)(0.10 L) (0.20 M)(5.0 10 L) 0.105 M

H PO
total

2 4

3

3

2 4

#
#

= +

=
+
+

=

-

-

-

-

C V
05 0381

mol HPO mol HCl

0.10 L 5.0 10 L
(0. M)(0.10 L) (0.20 M)(5.0 10 L) 0. M

2

HPO
total

4

3

3

2
4

#
#

= -

=
+
-

=

-

-

-

-

Substituting these concentrations into equation 6.60 gives a pH of

. . .
. . .log log7 199 7 199 0 105

0 0381 6 759 6 76pH [H PO ]
[HPO ]

2 4

4
2

.= + = + =-

-

As we expect, adding HCl decreases the buffer’s pH by a small amount, 
dropping from 6.90 to 6.76.

Click here to return to the chapter.
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Practice Exercise 6.13
We begin by calculating the solution’s ionic strength. Because NaCl is a 1:1 
ionic salt, the ionic strength is the same as the concentration of NaCl; thus 
n = 0.10 M. This assumes, of course, that we can ignore the contributions 
of Hg2

2+  and Cl– from the solubility of Hg2Cl2.
Next we use equation 6.63 to calculate the activity coefficients for Hg2

2+  
and Cl–.

. . .
. ( ) . .

.

log
1 3 3 0 40 0 10

0 51 2 0 10 0 455

0 351

2

Hg

Hg

2
2

2
2

# #
# #

c

c

=
+

- +
=-

=

+

+

. . .
. ( ) . .

.

log
1 3 3 0 3 0 10

0 51 1 0 10 0 12

0 75

2

Cl

Cl

# #
# #

c

c

=
+

- -
=-

=

-

-

Defining the equilibrium concentrations of Hg2
2+  and Cl– in terms of the 

variable x
Concentrations Hg2Cl2 (s) ? Hg2

2+  (aq) + 2Cl– (aq)
Initial solid 0 0.10

Change solid +x +2x
Equilibrium solid x 0.10 + 2x

and substituting into the thermodynamic solubility product for Hg2Cl2, 
leave us with

( ) ( ) .K a a 1 2 10[Hg ] [Cl ]2 2 2 18
sp Hg Cl Hg 2

2
Cl2

2
2
2 #c c= = =+ - -

+ - + -

( . ) ( ) ( . ) ( . ) .x x0 351 0 75 0 1 2 1 2 102 2 18#+ = -

Because the value of x likely is small, let’s simplify this equation to
( . ) ( ) ( . ) ( . ) .x0 351 0 75 0 1 1 2 102 2 18#= -

Solving for x gives its value as 6.1 × 10–16. Because x is the concentration 
of Hg2

2+  and 2x is the concentration of Cl–, our decision to ignore their 
contributions to the ionic strength is reasonable. The molar solubility of  
Hg2Cl2 in 0.10 M NaCl is 6.1 × 10–16 mol/L. In Practice Exercise 6.8, 
where we ignored ionic strength, we determined that the molar solubility 
of  Hg2Cl2 is 1.2 × 10–16 mol/L, a result that is 5× smaller than the its 
actual value.

Click here to return to the chapter.

Practice Exercise 6.14
For a list of the relevant equilibrium reactions and equilibrium constants, 
see our earlier treatment of this problem. To solve this problem using 
Excel, let’s set up the following spreadsheet



268 Analytical Chemistry 2.1

A B
1 pI = 3

2 [I-] = = 10^–b1
3 [Ag+] = = 8.3e–17/b2
4 [Ag(NH3)2+] = = b2 – b3
5 [NH3] = = (b4/(b3*1.7e7))^0.5
6 [NH4+] = = 0.10 –  b5-2*b4
7 [OH-] = = 1.75e–5*b5/b6
8 [H3O+] = = 1.00e–14/b7
9 error = b3 + b4 + b6 + b8 – b2 – b7

copying the contents of cells B1-B9 into several additional columns. The 
initial guess for pI in cell B1 gives the concentration of I– in cell B2. Cells 
B3–B8 calculate the remaining concentrations, using the Ksp to obtain 
[Ag+], using the mass balance on iodide and silver to obtain [ Ag(NH )3 2

+ ], 
using b2 to calculate [NH3], using the mass balance on ammonia to find 
[ NH4

+ ], using Kb to calculate [OH–], and using Kw to calculate [H3O+]. 
The system’s charge balance equation provides a means for determining 
the calculation’s error.

[Ag ] [Ag(NH ) ] [NH ] [H O ] [I ] [OH ] 03 2 4 3+ + + - + =+ + + + - -

The largest possible value for pI which corresponds to the smallest concen-
tration of I– and the lowest possible solubility, occurs for a simple, satu-
rated solution of AgI. When [Ag+] = [I–], the concentration of iodide is

. .K 8 3 10 9 1 10[I ] 17 9
sp # #= = =- - -

which corresponds to a pI of 8.04. Entering initial guesses for pI of 4, 5, 
6, 7, and 8 shows that the error changes sign between a pI of 5 and 6. 
Continuing in this way to narrow down the range for pI, we find that the 
error function is closest to zero at a pI of 5.42. The concentration of I– at 
equilibrium, and the molar solubility of AgI, is 3.8 × 10–6 mol/L, which 
agrees with our earlier solution to this problem.

Click here to return to the chapter

Practice Exercise 6.15
To solve this problem, let’s use the following function 

> eval = function(pI){
+ I =10^–pI
+ Ag = 8.3e–17/I
+ AgNH3 = Ag – I
+ NH3 =(AgNH3/(1.7e7*Ag))^0.5
+ NH4 =0.10-NH3 – 2*AgNH3
+ OH =1.75e–5*NH3/NH4
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+ H3O =1e–14/OH
+ error = Ag + AgNH3 + NH4 + H3O – OH – I
+ output = data.frame(pI, error)
+ print(output)
+ }

The function accepts an initial guess for pI and calculates the concentra-
tions of each species in solution using the definition of pI to calculate [I–], 
using the Ksp to obtain [Ag+], using the mass balance on iodide and silver 
to obtain [ Ag(NH )3 2

+ ], using b2 to calculate [NH3], using the mass bal-
ance on ammonia to find [ NH4

+ ], using Kb to calculate [OH–], and using 
Kw to calculate [H3O+]. The system’s charge balance equation provides a 
means for determining the calculation’s error.

[Ag ] [Ag(NH ) ] [NH ] [H O ] [I ] [OH ] 03 2 4 3+ + + - + =+ + + + - -

The largest possible value for pI—corresponding to the smallest concen-
tration of I– and the lowest possible solubility—occurs for a simple, satu-
rated solution of AgI.  When [Ag+] = [I–], the concentration of iodide is

. .K 8 3 10 9 1 10[I ] 17 9
sp # #= = =- - -

corresponding to a pI of 8.04. The following session shows the function 
in action.

> pI =c(4, 5, 6, 7, 8)
> eval(pI)
  pI       error
1  4 -2.56235615
2  5 -0.16620930
3  6  0.07337101
4  7  0.09734824
5  8  0.09989073
> pI =c(5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0)
> eval(pI)
    pI       error
1  5.1 -0.11144658
2  5.2 -0.06794105
3  5.3 -0.03336475
4  5.4 -0.00568116
5  5.5  0.01571549
6  5.6  0.03308929
7  5.7  0.04685937
8  5.8  0.05779214
9  5.9  0.06647475
10 6.0  0.07337101
> pI =c(5.40, 5.41, 5.42, 5.43, 5.44, 5.45, 5.46, 5.47, 5.48, 5.49, 5.50)
> eval(pI)
     pI         error
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1  5.40 -0.0056811605
2  5.41 -0.0030715484
3  5.42  0.0002310369
4  5.43 -0.0005134898
5  5.44  0.0028281878
6  5.45  0.0052370980
7  5.46  0.0074758181
8  5.47  0.0096260370
9  5.48  0.0117105498
10 5.49  0.0137387291
11 5.50  0.0157154889

The error function is closest to zero at a pI of 5.42. The concentration of 
I– at equilibrium, and the molar solubility of AgI, is 3.8 × 10–6 mol/L, 
which agrees with our earlier solution to this problem.

Click here to return to the chapter


